Adaptive spatial control of soft x-rays for coherent microscopy applications

用于相干显微镜应用的软 X 射线的自适应空间控制

基本信息

  • 批准号:
    EP/N029313/1
  • 负责人:
  • 金额:
    $ 11.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Imaging the structure and motion of molecular-scale systems is of fundamental importance in science. Imaging such small spatial features requires the use of light with wavelengths of the order of a few nanometers, while resolving fast dynamics in these systems requires pulses of light with durations of attoseconds (1as = 1 thousandth of a billionth of a nanosecond). Producing bright light sources which meet these requirements represents a significant challenge but the potential rewards are huge, with applications spanning biomedical science to advanced engineering and nanotechnology. One source of short wavelength radiation is high-harmonic generation (HHG). This is a nonlinear process which can occur when an intense laser pulse is focussed into a gas, causing the atoms to emit bursts of soft x-rays. HHG is a very attractive source for many applications since the resulting soft x-ray beams are coherent, or laser-like, and can be generated using compact laser systems. The HHG pulses are also extremely short - on the order of attoseconds - and correspond to the natural timescales of electronic motion. Recent experiments have shown that HHG can be used to drive coherent diffractive imaging (CDI) experiments, previously only possible at large-scale facilities. In CDI an object is illuminated by a coherent beam of x-rays and the diffracted light recorded. Algorithms are then used to determine the shape of the object from the diffracted pattern. CDI performed at large-scale facilities has proven to be an extraordinarily powerful technique, enabling the structures of cells and nanocrystals to be determined. Laboratory-scale CDI driven by HHG is therefore an attractive route towards compact, ultrafast, nanoscale imaging, and would be a revolutionary scientific tool.However, a key step in realizing the full potential of HHG is to control the spatial structure of these beams. CDI is very sensitive to the coherence and shape of the illuminating beam while the nonlinearity of the HHG process can result in beams which exhibit complex structures. Controlling these beams is non-trivial since conventional optics, such as lenses, absorb strongly at these wavelengths. In this programme we will achieve precise control of HHG beams by implementing two innovations. The first uses a new approach for manipulating the shape of intense laser pulses which was developed by our project partners at Oxford University. This technique combines two programmable optical elements, one reflective and one refractive, in order to allow arbitrary shaping of an ultrafast laser beam. The sensitively of the HHG process to the driving laser means that by precisely controlling the laser beam we will be able to modify the properties of the generated harmonics. The second innovation is that we will be able to measure directly, for the first time, the changes in the structure of the HHG field as the driving beam is varied. To do this we will implement a technique which we developed recently which uses a pair of pinholes in the HHG beam to create an interference pattern. By analysing the interference pattern as the pinholes are moved we can determine the intensity, curvature, and coherence of the HHG beam with high accuracy. This control system will allow us to dramatically improve the power of HHG-driven CDI. For example, we will be able to greatly increase the brightness of the HHG source, improve its coherence, and control its wavefront curvature. This will result in much sharper images, higher resolutions, and faster image acquisitions. It will also enable us to image complex targets, such as viruses and nanoparticles. This research programme will bring together powerful new techniques in pulse-shaping and x-ray metrology to dramatically extend the scope of compact x-ray imaging. The development of such a system is crucial for a variety of areas such as high-contrast biological imaging, advanced lithography, materials engineering, and medicine.
对分子尺度系统的结构和运动进行成像在科学中具有根本的重要性。成像这样小的空间特征需要使用波长为几纳米量级的光,而在这些系统中解析快速动力学需要持续时间为阿秒(1as =十亿分之一纳秒)的光脉冲。生产满足这些要求的明亮光源是一项重大挑战,但潜在的回报是巨大的,其应用范围涵盖生物医学科学到先进工程和纳米技术。短波长辐射的一个来源是高次谐波产生(HHG)。这是一个非线性过程,当强激光脉冲聚焦到气体中时,会发生这种过程,导致原子发出软x射线。高次谐波是一个非常有吸引力的来源,许多应用,因为所得的软x射线束是相干的,或激光类,并可以使用紧凑的激光系统产生。HHG脉冲也非常短-在阿秒的数量级上-并且对应于电子运动的自然时间尺度。最近的实验表明,HHG可用于驱动相干衍射成像(CDI)实验,以前只能在大型设施中进行。在CDI中,物体被X射线的相干光束照射,并且衍射光被记录。然后使用算法从衍射图案确定物体的形状。在大规模设施中进行的CDI已被证明是一种非常强大的技术,能够确定细胞和纳米晶体的结构。因此,由HHG驱动的可测量尺度的CDI是实现紧凑、超快、纳米级成像的有吸引力的途径,并且将是革命性的科学工具。然而,实现HHG全部潜力的关键步骤是控制这些光束的空间结构。CDI对照明光束的相干性和形状非常敏感,而HHG过程的非线性可能导致呈现复杂结构的光束。控制这些光束是不平凡的,因为传统的光学器件,如透镜,强烈吸收这些波长。在本计划中,我们将通过实施两项创新来实现HHG光束的精确控制。第一种方法使用了一种新的方法来操纵强激光脉冲的形状,这种方法是由我们在牛津大学的项目合作伙伴开发的。该技术结合了两个可编程光学元件,一个反射和一个折射,以允许任意成形的超快激光束。HHG工艺对驱动激光的敏感性意味着通过精确控制激光束,我们将能够修改所产生谐波的性质。第二个创新是,我们将能够直接测量,第一次,在驱动光束变化的HHG场的结构的变化。为了做到这一点,我们将实施一项技术,我们最近开发的使用一对针孔的HHG光束,以创建一个干涉图案。通过分析针孔移动时的干涉图样,我们可以高精度地确定高次谐波光束的强度、曲率和相干性。这个控制系统将使我们能够大大提高HHG驱动的CDI的功率。例如,我们将能够大大增加HHG源的亮度,提高其相干性并控制其波前曲率。这将导致更清晰的图像,更高的分辨率和更快的图像采集。它还将使我们能够对复杂的目标进行成像,例如病毒和纳米颗粒。该研究计划将汇集脉冲整形和X射线计量方面的强大新技术,以大幅扩展紧凑型X射线成像的范围。这种系统的开发对于高对比度生物成像、先进光刻、材料工程和医学等领域至关重要。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatially resolved common-path high-order harmonic interferometry.
空间分辨共路径高次谐波干涉测量。
  • DOI:
    10.1364/ol.43.005275
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Mang MM
  • 通讯作者:
    Mang MM
Optimised XUV holography using spatially shaped high harmonic beams.
  • DOI:
    10.1364/oe.27.029016
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    D. Treacher;D. T. Lloyd;Florian Wiegandt;K. O’Keeffe;S. Hooker
  • 通讯作者:
    D. Treacher;D. T. Lloyd;Florian Wiegandt;K. O’Keeffe;S. Hooker
Adaptive shaping of laser beams for high-harmonic generation applications
用于高次谐波产生应用的激光束自适应整形
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heath Benjamin
  • 通讯作者:
    Heath Benjamin
Comparison of Strong-field Ionization Models in the Wavelength-scaling of High Harmonic Generation
高次谐波产生波长缩放中的强场电离模型比较
  • DOI:
    10.1364/oe.27.006925
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lloyd D
  • 通讯作者:
    Lloyd D
Increasing the brightness of harmonic XUV radiation with spatially-tailored driver beams
使用空间定制的驱动光束提高谐波 XUV 辐射的亮度
  • DOI:
    10.1088/2040-8986/abcc56
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Treacher D
  • 通讯作者:
    Treacher D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin O'Keeffe其他文献

Attractive and repulsive interactions in the one-dimensional swarmalator model.
一维 swarmalator 模型中的吸引和排斥相互作用。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Baoli Hao;Ming Zhong;Kevin O'Keeffe
  • 通讯作者:
    Kevin O'Keeffe

Kevin O'Keeffe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
考虑外源变量的空间copula插值模型的开发及其在降雨和地下水水质插值上的验证
  • 批准号:
    41101020
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
空间数据不确定性的若干问题研究
  • 批准号:
    40352002
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Spatial Targeting and Adaptive Vector Control for Residual Transmission and Malaria Elimination in Urban African Settings
非洲城市环境中残留传播和消除疟疾的空间瞄准和自适应病媒控制
  • 批准号:
    10425450
  • 财政年份:
    2021
  • 资助金额:
    $ 11.32万
  • 项目类别:
Spatial Targeting and Adaptive Vector Control for Residual Transmission and Malaria Elimination in Urban African Settings
非洲城市环境中残留传播和消除疟疾的空间瞄准和自适应病媒控制
  • 批准号:
    10277051
  • 财政年份:
    2021
  • 资助金额:
    $ 11.32万
  • 项目类别:
Spatial Targeting and Adaptive Vector Control for Residual Transmission and Malaria Elimination in Urban African Settings
非洲城市环境中残留传播和消除疟疾的空间瞄准和自适应病媒控制
  • 批准号:
    10612419
  • 财政年份:
    2021
  • 资助金额:
    $ 11.32万
  • 项目类别:
RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
  • 批准号:
    1302393
  • 财政年份:
    2013
  • 资助金额:
    $ 11.32万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
  • 批准号:
    1302360
  • 财政年份:
    2013
  • 资助金额:
    $ 11.32万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Decision-Making on Uncertain Spatial-Temporal Fields: Modeling, Planning and Control with Applications to Adaptive Sampling
RI:中:协作研究:不确定时空场的决策:建模、规划和控制及其在自适应采样中的应用
  • 批准号:
    1302302
  • 财政年份:
    2013
  • 资助金额:
    $ 11.32万
  • 项目类别:
    Continuing Grant
Analyzing and Modeling Human Adaptive Spatial Control Skills Using General Principles of Optimal Control
使用最优控制的一般原理对人类自适应空间控制技能进行分析和建模
  • 批准号:
    1002298
  • 财政年份:
    2010
  • 资助金额:
    $ 11.32万
  • 项目类别:
    Standard Grant
Adaptive Spatial Pattern Recognition and Time Series Signal Analysis Techniques for Myoelectric Control of Lower Limb Prostheses
下肢假肢肌电控制的自适应空间模式识别和时间序列信号分析技术
  • 批准号:
    8307062
  • 财政年份:
    1984
  • 资助金额:
    $ 11.32万
  • 项目类别:
    Continuing Grant
THE FRONTAL LOBE AND THE CEREBRAL CONTROL OF ADAPTIVE SPATIAL-MOTOR BEHAVIOR
额叶和大脑对自适应空间运动行为的控制
  • 批准号:
    3759394
  • 财政年份:
  • 资助金额:
    $ 11.32万
  • 项目类别:
FRONTAL LOBE AND CEREBRAL CONTROL OF ADAPTIVE SPATIAL/MOTOR BEHAVIOR
自适应空间/运动行为的额叶和大脑控制
  • 批准号:
    6162851
  • 财政年份:
  • 资助金额:
    $ 11.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了