A graph theoretical approach for combinatorial designs
组合设计的图论方法
基本信息
- 批准号:EP/P002420/1
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many fundamental problems in combinatorics and related areas can be formulated as decomposition problems - where the aim is to decompose a large discrete structure into suitable smaller ones. Such problems have numerous applications to a wide range of areas, for example, to the design of experiments in biology and chemistry, to constructing error-correcting codes in coding theory and to constructing mutually unbiased bases in quantum information theory. Typical questions in this field also arise from considering scheduling problems, a famous recreational example being Kirkman's schoolgirl problem which dates back to 1850 and asks for an assignment of 15 schoolgirls into groups of 3 on 7 different days such that no two schoolgirls are allocated to the same group more than once. This particular problem is easy to solve and its solution is the simplest example of a Steiner triple system or, more generally, a combinatorial design. More general constructions of such combinatorial designs are often based on geometric and algebraic concepts such as projective planes and Hadamard matrices. One limitation of existing results on combinatorial designs has often been the assumption that the underlying system is complete or highly symmetric. However, there have been recent breakthroughs (involving, for example, probabilistic techniques) which provide tools to approach problems that have been deemed out of reach until now. This project will seek combinatorial designs in non-complete systems (potential applications of these include communication networks). Since the deterministic problem of the existence of non-trivial designs in this non-complete setting is known to be computationally intractable, one goal of the project is to identify natural sufficient conditions for finding such designs. The loss of the symmetrical structure of these systems makes it difficult to apply constructions based on algebraic and geometric objects but the use of probabilistic ideas offers promising solutions.The proposed research will approach these problems from a graph theoretical perspective. For instance, a Steiner triple system (such as the above example) can be viewed as a decomposition of a complete graph into edge-disjoint triangles. The project will yield powerful combinatorial and probabilistic techniques to find decompositions in a large class of graphs and hypergraphs which will have applications to further problems and areas such as decomposition problems into large structures.
组合学和相关领域的许多基本问题都可以表述为分解问题——其目的是将一个大的离散结构分解成合适的小结构。这些问题在许多领域都有广泛的应用,例如,在生物学和化学的实验设计中,在编码理论中构建纠错码,在量子信息论中构建相互无偏的基。这一领域的典型问题也来自于考虑调度问题,一个著名的娱乐例子是Kirkman的女学生问题,该问题可以追溯到1850年,要求在7天将15名女学生分成3组,这样就不会有两个女学生被分配到同一个组。这个特殊的问题很容易解决,它的解是斯坦纳三重系统的最简单的例子,或者更一般地说,是组合设计。这种组合设计的更一般的结构通常基于几何和代数概念,如投影平面和阿达玛矩阵。现有的组合设计结果的一个限制通常是假设底层系统是完整的或高度对称的。然而,最近有了一些突破(例如,涉及到概率技术),这些突破为解决迄今为止被认为遥不可及的问题提供了工具。该项目将在不完整的系统中寻求组合设计(这些系统的潜在应用包括通信网络)。由于在这种非完全设置中存在非平凡设计的确定性问题已知是难以计算的,因此该项目的一个目标是确定找到此类设计的自然充分条件。这些系统的对称结构的丧失使得应用基于代数和几何对象的结构变得困难,但使用概率思想提供了有希望的解决方案。本研究将从图论的角度来探讨这些问题。例如,一个斯坦纳三重系统(如上面的例子)可以被看作是一个完全图分解成边不相交的三角形。该项目将产生强大的组合和概率技术,用于在大量图和超图中找到分解,这将应用于进一步的问题和领域,例如将问题分解为大型结构。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subgraphs with Large Minimum l-Degree in Hypergraphs where Almost All l-Degrees are Large
超图中几乎所有 l 度都很大的最小 l 度较大的子图
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Falgas-Ravry V
- 通讯作者:Falgas-Ravry V
Upper density of monochromatic infinite paths
- DOI:10.19086/aic.10810
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Jan Corsten;Louis DeBiasio;Ander Lamaison;R. Lang
- 通讯作者:Jan Corsten;Louis DeBiasio;Ander Lamaison;R. Lang
Upper density of monochromatic paths in edge-coloured infinite complete graphs and bipartite graphs
- DOI:10.1016/j.ejc.2022.103625
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:A. N. Day;A. Lo
- 通讯作者:A. N. Day;A. Lo
Spanning trees with few branch vertices
- DOI:10.1137/17m1152759
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Louis DeBiasio;A. Lo
- 通讯作者:Louis DeBiasio;A. Lo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siu Lun Lo其他文献
Siu Lun Lo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siu Lun Lo', 18)}}的其他基金
Ramsey theory: an extremal perspective
拉姆齐理论:极端观点
- 批准号:
EP/V048287/1 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
相似海外基金
Essence and ontology of structure-building mechanisms of natural language system: a graph-theoretical approach
自然语言系统结构构建机制的本质和本体论:图论方法
- 批准号:
21K00491 - 财政年份:2021
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graph theoretical approach for neurological disorders with electrophysiological connectome
利用电生理连接组治疗神经系统疾病的图论方法
- 批准号:
20K16575 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Origin and Mechanisms of Flexibility in Molecular Framework Materials: A Data-driven, Graph Theoretical Approach
分子框架材料柔性的起源和机制:数据驱动的图论方法
- 批准号:
EP/S015868/1 - 财政年份:2019
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
Core Center for Integrated Research on Human Communication Disorders
人类沟通障碍综合研究核心中心
- 批准号:
8416040 - 财政年份:2013
- 资助金额:
$ 12.89万 - 项目类别:
Core Center for Integrated Research on Human Communication Disorders
人类沟通障碍综合研究核心中心
- 批准号:
8589583 - 财政年份:2013
- 资助金额:
$ 12.89万 - 项目类别:
Core Center for Integrated Research on Human Communication Disorders
人类沟通障碍综合研究核心中心
- 批准号:
8836519 - 财政年份:2013
- 资助金额:
$ 12.89万 - 项目类别:
Core Center for Integrated Research on Human Communication Disorders
人类沟通障碍综合研究核心中心
- 批准号:
9057499 - 财政年份:2013
- 资助金额:
$ 12.89万 - 项目类别:
Graph theoretical approach to study molecular evolution
研究分子进化的图论方法
- 批准号:
7594476 - 财政年份:
- 资助金额:
$ 12.89万 - 项目类别:
Graph theoretical approach to study molecular evolution
研究分子进化的图论方法
- 批准号:
7316285 - 财政年份:
- 资助金额:
$ 12.89万 - 项目类别:
Combinatorial and graph theoretical approach to systems biology and mol. evo.
系统生物学和分子生物学的组合和图论方法。
- 批准号:
8943247 - 财政年份:
- 资助金额:
$ 12.89万 - 项目类别:














{{item.name}}会员




