M2WPT - a large-scale Multi-antenna Multi-sine Wireless Power Transfer architecture

M2WPT - 大规模多天线多正弦无线功率传输架构

基本信息

  • 批准号:
    EP/P003885/1
  • 负责人:
  • 金额:
    $ 86.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Wireless power transfer (WPT) via radio-frequency (RF) radiation has long been regarded as a possibility for energising low-power devices in the internet of things. It is, however, not until recently that WPT has become recognised as feasible, due to reductions in power requirements of electronics. Far-field WPT using RF could be used for long range power delivery to increase user convenience. In the same way as wireless disrupted communication, WPT using RF is expected to disrupt the delivery of energy. The real challenge with far field WPT is to find ways to increase the DC power level at the energy harvester output without increasing the transmit power, and to ensure that sufficient range between transmitter and receiver can be achieved. The project relies on the observation that far-field WPT RF-to-DC conversion efficiency is a function of the rectenna design but also of its input waveform. A proper design of far-field WPT therefore requires a complete transmitter-receiver optimization rather than just the receiver (rectenna) design. Unfortunately state of the art waveforms have been shown partially disappointing for far-field WPT. The fundamental question behind the project is "can we design a disruptive but practical WPT transceiver architecture to make wireless power transfer a reality at distances of tens (if not more) of meters within regulated transmit power levels?"This visionary project, conducted at Imperial College London, will uniquely leverage signal processing tools to tackle a problem commonly investigated by the RF community. Motivated by recent results by the PI and Co-I and leveraging a unique set of complementary skills on multi-antenna signal processing (Clerckx) and WPT/rectenna design (Mitcheson), the project will design and show the feasibility of a disruptive M2WPT architecture based on optimized, adaptive and reliable large-scale multi-antenna multi-sine waveforms for single-user and multi-user scenarios, and identify its potential for far-field WPT. Thinking big, we advocate in this project that M2WPT will be to WPT what massive MIMO is to communication. M2WPT will enable highly efficient far-field WPT delivering sufficient power at long range for a wide range of applications.To put together this novel M2WPT solution in a credible fashion, this project focuses on 1) designing and modelling the energy harvester, 2) designing large-scale multi-sine multi-antenna waveforms for single and multi-user scenarios, 3) demonstrate the feasibility through experiment and measurement.The project will be performed in partnership with two leaders in equipment manufacturing and WPT standardization (Toshiba and Keysight), two well-established academic/research centres active in WPT (KULeuven and Eindhoven/IMEC) and the UK Office of the Chief Science Adviser. The project demands a strong and inter-disciplinary track record in microwave theory and techniques, circuit design, optimization theory, multi-antenna signal processing, wireless communication and it is to be conducted in a unique research group with a right mix of theoretical and practical skills. With the above and given the novelty and originality of the topic, the research outcomes will be of considerable value to transform the future of wireless networks supplied by remote wireless charging and give the industry a fresh and timely insight into the development of highly efficient remote wireless charging, advancing UK's research profile of wireless power in the world. Its success would radically change the design of radiative WPT, have a tremendous impact on standardization, and applications in a large number of sectors including building automation, healthcare, telecommunications, ICT, structural monitoring, consumer electronics.
通过射频(RF)辐射的无线功率传输(WPT)长期以来一直被认为是为物联网中的低功率设备供电的可能性。然而,直到最近,WPT才被认为是可行的,因为电子设备的功率需求降低了。使用RF的远场WPT可用于长距离功率输送以增加用户便利性。与无线中断通信相同,使用RF的WPT预计会中断能量的传输。远场WPT的真实的挑战是找到在不增加发射功率的情况下增加能量收集器输出处的DC功率电平的方法,并且确保可以实现发射器与接收器之间的足够范围。该项目依赖于远场WPT RF到DC转换效率是整流天线设计的函数,也是其输入波形的函数。因此,远场WPT的适当设计需要完整的发射器-接收器优化,而不仅仅是接收器(整流天线)设计。不幸的是,对于远场WPT,现有技术的波形已经显示出部分令人失望。该项目背后的根本问题是“我们能否设计一种颠覆性但实用的WPT收发器架构,使无线电力传输在规定的发射功率水平内实现数十米(如果不是更多)的距离?“这个有远见的项目,在帝国理工学院伦敦进行,将独特地利用信号处理工具,以解决一个问题,通常由射频社区调查。受PI和Co-I最近成果的启发,并利用多天线信号处理(Clerckx)和WPT/整流天线设计(Mitcheson)的一套独特的互补技能,该项目将设计并展示基于优化,自适应和可靠的单用户和多用户场景大规模多天线多正弦波形的破坏性M2 WPT架构的可行性,并确定其在远场WPT中的潜力。在这个项目中,我们认为M2 WPT对于WPT来说就像大规模MIMO对于通信一样。M2 WPT将使高效的远场WPT能够为广泛的应用提供足够的远距离功率。为了以可靠的方式将这种新颖的M2 WPT解决方案组合在一起,该项目侧重于1)设计和建模能量采集器,2)设计用于单用户和多用户场景的大规模多正弦多天线波形,3)通过实验和测量证明可行性。该项目将与设备制造和WPT标准化的两个领导者合作执行(东芝和是德科技)、活跃在WPT的两个成熟的学术/研究中心(KULeuven和埃因霍温/IMEC)以及英国首席科学顾问办公室。该项目需要在微波理论和技术,电路设计,优化理论,多天线信号处理,无线通信方面具有强大的跨学科记录,并且将在一个独特的研究小组中进行,该研究小组具有理论和实践技能的正确组合。鉴于上述情况以及该主题的新奇和独创性,研究成果将对改变远程无线充电提供的无线网络的未来具有相当大的价值,并为业界提供高效远程无线充电的发展提供新鲜而及时的见解,推动英国在世界上的无线电源研究概况。它的成功将从根本上改变辐射WPT的设计,对标准化产生巨大影响,并在许多行业中应用,包括楼宇自动化,医疗保健,电信,ICT,结构监测,消费电子产品。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Beneficial Roles of Fading and Transmit Diversity in Wireless Power Transfer With Nonlinear Energy Harvesting
Guest Editorial Wireless Transmission of Information and Power-Part I
客座社论信息和电力的无线传输-第一部分
Foundations of Wireless Information and Power Transfer: Theory, Prototypes, and Experiments
无线信息和电力传输的基础:理论、原型和实验
  • DOI:
    10.48550/arxiv.2209.03739
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clerckx B
  • 通讯作者:
    Clerckx B
Asymmetric Modulation Design for Wireless Information and Power Transfer With Nonlinear Energy Harvesting
Wirelessly Powered Backscatter Communications: Waveform Design and SNR-Energy Tradeoff
  • DOI:
    10.1109/lcomm.2017.2716341
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Clerckx;Zati Bayani Zawawi;Kaibin Huang
  • 通讯作者:
    B. Clerckx;Zati Bayani Zawawi;Kaibin Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno Clerckx其他文献

Beyond Diagonal Reconfigurable Intelligent Surfaces With Mutual Coupling: Modeling and Optimization
超越具有相互耦合的对角线可重构智能表面:建模和优化
  • DOI:
    10.1109/lcomm.2024.3361648
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongyu Li;Shanpu Shen;Matteo Nerini;M. Di Renzo;Bruno Clerckx
  • 通讯作者:
    Bruno Clerckx
Meta-Learning Based Optimization for Large Scale Wireless Systems
基于元学习的大规模无线系统优化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafael Cerna Loli;Bruno Clerckx
  • 通讯作者:
    Bruno Clerckx
Statins for Primary Prevention in Older Adults
他汀类药物用于老年人的一级预防
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    Hongyu Li;Shanpu Shen;Yumeng Zhang;Bruno Clerckx
  • 通讯作者:
    Bruno Clerckx
Multi-functional OFDM Signal Design for Integrated Sensing, Communications, and Power Transfer
用于集成传感、通信和电力传输的多功能 OFDM 信号设计
  • DOI:
    10.48550/arxiv.2311.00104
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yumeng Zhang;Sundar Aditya;Bruno Clerckx
  • 通讯作者:
    Bruno Clerckx
Physically Consistent Modeling of Stacked Intelligent Metasurfaces Implemented with Beyond Diagonal RIS
使用 Beyond Diagonal RIS 实现堆叠智能超表面的物理一致建模
  • DOI:
    10.48550/arxiv.2402.12602
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Nerini;Bruno Clerckx
  • 通讯作者:
    Bruno Clerckx

Bruno Clerckx的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno Clerckx', 18)}}的其他基金

Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Research Grant
Signal Sensing, Design and Delivery for Electronic Warfare
电子战信号传感、设计和传输
  • 批准号:
    EP/S026657/1
  • 财政年份:
    2019
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Research Grant
MIMO Wireless Networks: A Promising Rate Splitting Transceiver Architecture
MIMO 无线网络:一种有前途的速率分割收发器架构
  • 批准号:
    EP/N015312/1
  • 财政年份:
    2016
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Research Grant
RF Energy Harvesting Communications
射频能量收集通信
  • 批准号:
    EP/M008193/1
  • 财政年份:
    2014
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Research Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
钙激活的大电流钾离子通道β1亚基影响慢性肾脏病进展的机制探讨
  • 批准号:
    81070587
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
  • 批准号:
    30901566
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
稀疏全基因组关联分析方法研究
  • 批准号:
    10926200
  • 批准年份:
    2009
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Fellowship
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Standard Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Standard Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Research Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322601
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 86.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了