Perturbation Analysis for Probabilistic Verification
概率验证的扰动分析
基本信息
- 批准号:EP/P00430X/1
- 负责人:
- 金额:$ 12.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project mainly concerns probabilistic model checking (PMC), which enhances classical model checking techniques to verify stochastic systems against various quantitative properties, for instance, reliability, security, and performance. PMC has witnessed successful applications from domains as diverse as randomised algorithms, network protocol design, robotics, and systems biology. Current practice of probabilistic model checking usually assumes that numerical quantities (e.g., transition probabilities, transition rates) in stochastic models are known exactly, or can be acquired precisely. This is a handy, but unfortunately oversimplified, assumption. Indeed, real-world systems, for instance those from engineering, biology, or economics, are governed by parameters whose values must be empirically estimated. These values are of a statistical nature and thus are subject to perturbations, which raises the sensitivity or robustness issue of the verification results. Research has demonstrated that even small perturbations of probabilities might lead to significant variations in the verification result, and thus the results obtained using existing PMC algorithms and tools can be misleading or even invalid. To tackle this issue, we propose to carry out perturbation analysis, i.e., to analyse how the verification result is affected by the perturbation of parameters and to provide a quantitative measure thereof. Concretely speaking, we will first investigate how to define the measures formally, possibly in various forms of perturbation bounds. Then we will develop efficient and effective algorithms to compute these perturbation bounds, and identify their computational complexity. Finally, we will develop software tools to facilitate the perturbation analysis. The toolkit will be employed to conduct case studies on real-world problems for a thorough evaluation of our approach and demonstration of its applicability and significance.
这个项目主要关注概率模型检查(PMC),它增强了经典模型检查技术来验证随机系统的各种定量特性,例如可靠性、安全性和性能。PMC已经见证了随机算法、网络协议设计、机器人和系统生物学等领域的成功应用。目前概率模型检验的实践通常假设随机模型中的数值量(例如,转移概率,转移率)是精确已知的,或者可以精确获得。这是一个方便的假设,但不幸的是过于简化了。事实上,现实世界的系统,例如来自工程、生物学或经济学的系统,都是由参数控制的,这些参数的值必须经过经验估计。这些值具有统计性质,因此会受到扰动,这就提出了验证结果的敏感性或鲁棒性问题。研究表明,即使是很小的概率扰动也可能导致验证结果发生显著变化,因此使用现有PMC算法和工具获得的结果可能具有误导性甚至无效。为了解决这个问题,我们建议进行摄动分析,即分析验证结果如何受到参数摄动的影响,并提供量化的度量。具体地说,我们将首先研究如何正式地定义度量,可能是在各种形式的扰动界中。然后,我们将开发高效的算法来计算这些摄动界,并确定它们的计算复杂度。最后,我们将开发软件工具来促进微扰分析。该工具包将用于对现实世界问题进行案例研究,以全面评估我们的方法并展示其适用性和重要性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II
计算机辅助验证 - 第 30 届国际会议,CAV 2018,作为联邦逻辑会议的一部分举行,FloC 2018,英国牛津,2018 年 7 月 14-17 日,会议记录,第二部分
- DOI:10.1007/978-3-319-96142-2_29
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chen T
- 通讯作者:Chen T
What is decidable about string constraints with the ReplaceAll function
- DOI:10.1145/3158091
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Taolue Chen;Yan Chen;M. Hague;Anthony W. Lin;Zhilin Wu
- 通讯作者:Taolue Chen;Yan Chen;M. Hague;Anthony W. Lin;Zhilin Wu
Verifying Pushdown Multi-Agent Systems against Strategy Logics
- DOI:
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:Taolue Chen;Fu Song;Zhilin Wu
- 通讯作者:Taolue Chen;Fu Song;Zhilin Wu
Tractability of Separation Logic with Inductive Definitions: Beyond Lists
- DOI:10.4230/lipics.concur.2017.37
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Taolue Chen;Fu Song;Zhilin Wu
- 通讯作者:Taolue Chen;Fu Song;Zhilin Wu
Polynomial-time algorithms for computing distances of fuzzy transition systems
用于计算模糊转移系统距离的多项式时间算法
- DOI:10.1016/j.tcs.2018.03.002
- 发表时间:2017-01
- 期刊:
- 影响因子:1.1
- 作者:Chen Taolue;Han Tingting;Cao Yongzhi
- 通讯作者:Cao Yongzhi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taolue Chen其他文献
A Hybrid Approach to Formal Verification of Higher-Order Masked Arithmetic Programs
高阶掩码算术程序形式化验证的混合方法
- DOI:
10.1145/3428015 - 发表时间:
2020-06 - 期刊:
- 影响因子:0
- 作者:
Pengfei Gao;Hongyi Xie;Fu Song;Taolue Chen - 通讯作者:
Taolue Chen
Adversarial Robustness of Deep Code Comment Generation
深度代码注释生成的对抗鲁棒性
- DOI:
10.1145/3501256 - 发表时间:
2021-07 - 期刊:
- 影响因子:0
- 作者:
Yu Zhou;Xiaoqing Zhang;Juanjuan Shen;Tingting Han;Taolue Chen;Harald C. Gall - 通讯作者:
Harald C. Gall
Bacterial Communities Structure and Diversity in Rhizosphere Soil of Dominant Plants in Riparian Wetlands of Reservoir in Zhejiang Province, China
浙江省水库河岸湿地优势植物根际土壤细菌群落结构及多样性
- DOI:
10.1088/1742-6596/2468/1/012158 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Haisheng Chen;Taolue Chen;Zhaoping Zhu;Linsheng Cai;Wenmei Luo;Xiaoyu Huang;Hongxue Zeng;Youchong Zhu - 通讯作者:
Youchong Zhu
Time-Abstracting Bisimulation for Probabilistic Timed Automata
概率定时自动机的时间抽象互模拟
- DOI:
10.1109/tase.2008.29 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Taolue Chen;Tingting Han;J. Katoen - 通讯作者:
J. Katoen
Perturbation Analysis in Verification of Discrete-Time Markov Chains
离散时间马尔可夫链验证中的扰动分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Taolue Chen;Yuan Feng;David S. Rosenblum;Guoxin Su - 通讯作者:
Guoxin Su
Taolue Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taolue Chen', 18)}}的其他基金
Perturbation Analysis for Probabilistic Verification
概率验证的扰动分析
- 批准号:
EP/P00430X/2 - 财政年份:2017
- 资助金额:
$ 12.87万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
CAREER: Model-based compression and probabilistic analysis of non-Markovian sequences
职业:非马尔可夫序列的基于模型的压缩和概率分析
- 批准号:
2144974 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Continuing Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Uncertainty Quantification for Probabilistic Stability Analysis and Uncertainty-Aware Control of Electric Power Systems
电力系统概率稳定性分析和不确定性感知控制的不确定性量化
- 批准号:
RGPIN-2022-03236 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Probabilistic Analysis of Water Distribution System Peaking Factors
供水系统峰值因素的概率分析
- 批准号:
572717-2022 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133806 - 财政年份:2022
- 资助金额:
$ 12.87万 - 项目类别:
Standard Grant
Probabilistic Analysis of Combinatorial Objects
组合对象的概率分析
- 批准号:
565339-2021 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Optimal security patch management tool design based on probabilistic modeling and analysis
基于概率建模与分析的最优安全补丁管理工具设计
- 批准号:
21K17742 - 财政年份:2021
- 资助金额:
$ 12.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists