THE FUTURE COMPOSITES MANUFACTURING HUB
未来复合材料制造中心
基本信息
- 批准号:EP/P006701/1
- 负责人:
- 金额:$ 1380.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advanced composite materials consist of reinforcement fibres, usually carbon or glass, embedded within a matrix, usually a polymer, providing a structural material. They are very attractive to a number of user sectors, in particular transportation due to their combination of low weight and excellent material properties which can be tailored to specific applications. Components are typically manufactured either by depositing fibres into a mould and then infusing with resin (liquid moulding) or by forming and consolidation of pre-impregnated fibres (prepreg processing). The current UK composites sector has a value of £1.5 billion and is projected to grow to over £4 billion by 2020, and to between £6 billion and £12 billion by 2030. This range depends on the ability of the industry to deliver structures at required volumes and quality levels demanded by its target applications. Much of this potential growth is associated with next generation single-aisle aircraft, light-weighting of vehicles to reduce fuel consumption, and large, lightweight and durable structures for renewable energy and civil infrastructure. The benefits of lightweight composites are clear, and growth in their use would have a significant impact on both the UK's climate change and infrastructure targets, in addition to a direct impact on the economy through jobs and exports. However the challenges that must be overcome to achieve this growth are significant. For example, BMW currently manufacture around 20,000 i3 vehicles per year with significant composites content. To replace mass produced vehicles this production volume would need to increase by up to 100-times. Airbus and Boeing each produce around 10 aircraft per month (A350 and 787 respectively) with high proportions of composite materials. The next generation single aisle aircraft are likely to require volumes of 60 per month. Production costs are high relative to those associated with other materials, and will need to reduce by an order of magnitude to enable such growth levels.The Future Composites Manufacturing Hub will enable a step change in manufacturing with advanced polymer composite materials. The Hub will be led by the University of Nottingham and University of Bristol; with initial research Spokes at Cranfield, Imperial College, Manchester and Southampton; Innovation Spokes at the National Composites Centre (NCC), Advanced Manufacturing Research Centre (AMRC), Manufacturing Technology Centre (MTC) and Warwick Manufacturing Group (WMG); and backed by 18 leading companies from the composites sector. Between the Hub, Spokes and industrial partners we will offer a minimum of £12.7 million in additional support to deliver our objectives. Building on the success of the EPSRC Centre for Innovative Manufacturing in Composites (CIMComp), the Hub will drive the development of automated manufacturing technologies that deliver components and structures for demanding applications, particularly in the aerospace, transportation, construction and energy sectors. Over a seven year period, the Hub will underpin the growth potential of the sector, by developing the underlying processing science and technology to enable Moore's law for composites: a doubling in production capability every two years. To achieve our vision we will address a number of research priorities, identified in collaboration with industry partners and the broader community, including: high rate deposition and rapid processing technologies; design for manufacture via validated simulation; manufacturing for multifunctional composites and integrated structures; inspection and in-process evaluation; recycling and re-use. Matching these priorities with UK capability, we have identified the following Grand Challenges, around which we will conduct a series of Feasibility Studies and Core Projects:-Enhance process robustness via understanding of process science -Develop high rate processing technologies for high quality structures
先进的复合材料由增强纤维组成,通常是碳或玻璃,嵌入基质中,通常是聚合物,提供结构材料。它们对许多用户部门非常有吸引力,特别是运输,因为它们结合了重量轻和优异的材料性能,可以根据特定应用进行定制。部件通常通过将纤维沉积到模具中然后注入树脂(液体模塑)或通过预浸渍纤维的成型和固结(预浸处理)来制造。目前英国复合材料行业的价值为15亿英镑,预计到2020年将增长到40亿英镑以上,到2030年将增长到60亿至120亿英镑。该范围取决于行业以目标应用所需的数量和质量水平提供结构的能力。这一潜在增长的大部分与下一代单通道飞机、减轻车辆重量以减少燃料消耗以及用于可再生能源和民用基础设施的大型、轻型和耐用结构有关。轻质复合材料的好处是显而易见的,其使用的增长将对英国的气候变化和基础设施目标产生重大影响,此外还将通过就业和出口对经济产生直接影响。然而,实现这一增长必须克服的挑战是巨大的。例如,宝马目前每年生产约20,000辆i3汽车,其中包含大量复合材料。为了取代大规模生产的汽车,这一生产量需要增加100倍。空客和波音每月都生产大约10架飞机(分别为A350和787),其中复合材料的比例很高。下一代单通道飞机可能每月需要60架。与其他材料相比,生产成本很高,需要降低一个数量级才能实现这样的增长水平。未来复合材料制造中心将使先进聚合物复合材料的制造发生飞跃。该中心将由诺丁汉大学和布里斯托大学领导;在克兰菲尔德、帝国理工学院、曼彻斯特和南安普顿设有初步研究中心;在国家复合材料中心(NCC)、先进制造研究中心(AMRC)、制造技术中心(MTC)和沃里克制造集团(WMG)设有创新中心;并得到复合材料行业18家领先公司的支持。在中心,辐条和工业合作伙伴之间,我们将提供至少1270万英镑的额外支持,以实现我们的目标。在EPSRC复合材料创新制造中心(CIMComp)成功的基础上,该中心将推动自动化制造技术的发展,为要求苛刻的应用提供组件和结构,特别是在航空航天,运输,建筑和能源领域。在七年的时间里,该中心将通过开发基础加工科学和技术来巩固该行业的增长潜力,以实现复合材料的摩尔定律:生产能力每两年翻一番。为了实现我们的愿景,我们将解决一些研究重点,与行业合作伙伴和更广泛的社区合作确定,包括:高速沉积和快速加工技术;通过验证模拟制造设计;多功能复合材料和集成结构的制造;检查和过程中评估;回收和再利用。将这些优先事项与英国的能力相匹配,我们确定了以下重大挑战,我们将围绕这些挑战进行一系列可行性研究和核心项目:-通过了解工艺科学来增强工艺稳健性-开发高质量结构的高速加工技术
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A layer by layer manufacturing process for composite structures
复合材料结构的逐层制造工艺
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Belnoue, J
- 通讯作者:Belnoue, J
Tooling and Infusion Design Strategies to Reduce Trade-Offs in Forming and Infusion Quality of Multi-Textile CFRPs
减少多种织物 CFRP 成型和灌注质量权衡的工具和灌注设计策略
- DOI:10.3390/jmmp6030062
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Budwal N
- 通讯作者:Budwal N
Understanding heterogeneity in discontinuous compression moulded composite materials for high-volume applications
了解大批量应用的不连续压缩成型复合材料的异质性
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Bull, D.J
- 通讯作者:Bull, D.J
A vision for a lightweight railway wheelset of the future
- DOI:10.1177/09544097221080619
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:S. Bruni;P. J. Mistry;Michael S. Johnson;A. Bernasconi;M. Carboni;Davide Formaggioni;Guido Carra;Sergio Macchiavello;E. Ferrante;I. Kaiser;J. Viñolas;Irene Marazzi
- 通讯作者:S. Bruni;P. J. Mistry;Michael S. Johnson;A. Bernasconi;M. Carboni;Davide Formaggioni;Guido Carra;Sergio Macchiavello;E. Ferrante;I. Kaiser;J. Viñolas;Irene Marazzi
Electrochemical performance of supercapacitor electrodes based on carbon aerogel-reinforced spread tow carbon fiber fabrics
- DOI:10.1016/j.compscitech.2023.110042
- 发表时间:2023-04
- 期刊:
- 影响因子:9.1
- 作者:H. D. Asfaw;A. Kucernak;E. Greenhalgh;M. Shaffer
- 通讯作者:H. D. Asfaw;A. Kucernak;E. Greenhalgh;M. Shaffer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Warrior其他文献
Simplified model for the tool-part interaction in spring-in of L-shape composite laminates
L 形复合材料层合板弹簧插入过程中刀具-零件相互作用的简化模型
- DOI:
10.1016/j.compstruct.2025.119022 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:7.100
- 作者:
Shuang Yan;Mikhail Matveev;Wenxuan Qi;Nicholas Warrior - 通讯作者:
Nicholas Warrior
Nicholas Warrior的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Warrior', 18)}}的其他基金
High-Volume Composites Manufacturing Cell with Digital Twinning Capability
具有数字孪生能力的大批量复合材料制造单元
- 批准号:
EP/T006420/1 - 财政年份:2019
- 资助金额:
$ 1380.06万 - 项目类别:
Research Grant
相似海外基金
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
- 批准号:
2340090 - 财政年份:2024
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
- 批准号:
2330318 - 财政年份:2024
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
- 批准号:
2338609 - 财政年份:2024
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
- 批准号:
2330319 - 财政年份:2024
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
I-Corps:Automated manufacturing of fiber-reinforced polymer composites
I-Corps:纤维增强聚合物复合材料的自动化制造
- 批准号:
2345499 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
High Rate Manufacturing Automation of Large-Scale Composites (HICOMS-A)
大型复合材料的高速制造自动化 (HICOMS-A)
- 批准号:
10070083 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
BEIS-Funded Programmes
SBIR Phase I: Fast and low-energy manufacturing of high-performance, fiber-reinforced composites
SBIR 第一阶段:快速、低能耗地制造高性能纤维增强复合材料
- 批准号:
2304621 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
CAREER: Additive Manufacturing of Polymer Composites via in-situ Polymerization
职业:通过原位聚合增材制造聚合物复合材料
- 批准号:
2239563 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
Standard Grant
Additive manufacturing-enabled micro-architected cellular composites for energy materials
用于能源材料的增材制造微架构蜂窝复合材料
- 批准号:
2887855 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
Studentship
Additive manufacturing-enabled micro-architected cellular composites for energy materials
用于能源材料的增材制造微架构蜂窝复合材料
- 批准号:
2894119 - 财政年份:2023
- 资助金额:
$ 1380.06万 - 项目类别:
Studentship