A Novel Deep Raman Spectroscopy Platform for Non-Invasive In-Vivo Diagnosis of Breast Cancer

用于乳腺癌非侵入性体内诊断的新型深度拉曼光谱平台

基本信息

  • 批准号:
    EP/P012442/1
  • 负责人:
  • 金额:
    $ 152.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Recently, we have pioneered a portfolio of revolutionary optical technologies in the area of laser spectroscopy, namely deep Raman spectroscopy, for non-invasive molecular probing of biological tissue. The developments have the potential of making a step-change in many fields of medicine including cancer diagnosis. The techniques comprise spatially offset Raman spectroscopy (SORS) and Transmission Raman (both patented by the applicants). The methods are described in detail in a tutorial review: http://pubs.rsc.org/en/content/articlelanding/2016/cs/c5cs00466g. There is an urgent clinical need for early objective diagnosis and prediction of likely treatment outcomes for many types of subsurface cancers. This is not addressed by existing technologies. There are numerous steps along the cancer clinical pathway where real-time, in vivo, molecular specific disease analysis would have a major impact. This would significantly reduce needle biopsy, in around 80% of those recalled following mammographic screening this step is unnecessarily - ie leading to the diagnosis of benign lesions. Our novel approach would allow for more accurate and immediate diagnosis in conjunction with mammography at first presentation by improving screening or surveillance techniques, leading to earlier diagnosis and better treatment outcomes. Secondly it would allow surgical margin assessment and treatment monitoring in real-time and thirdly identification of metastatic invasion in the lymphatic system during routine surgery. There are numerous other areas where a rapid molecular analysis of a tissue sample in the clinic or theatre environment would allow improved clinical decision-making, for example when pre- operatively staging the disease and particularly when non-invasively monitoring tumour response during chemo/radiotherapy. Clearly these approaches would be beneficial to the patient by reducing cancer recurrence rates; but also by minimising the numbers of invasive procedures required, thus reducing costs and patient anxiety.Raman spectroscopy is a highly molecular-specific method, which itself has proven to be a useful tool in early epithelial cancer diagnostics, although in its conventional form it has been restricted to sampling the tissue surface of much less than 1 mm deep. The new technology unlocks unique access to tissue abnormalities of up to several cm's deep, i.e. at depths one to two orders of magnitude higher than those previously possible with Raman.Following on from our previous project, where we were able to demonstrate conceptually a ~100x improvement in signal recovery compared to our early feasibility work, we are now able to rapidly develop a platform for real-clinical tools using this approach. We propose to make major breakthroughs in this area and advance diagnostics particularly focussed on breast cancer and lymph node metastasis initially as focused case studies and then potentially applied to prostate cancers (outside the scope of this proposal). This will be explored as a joint cross-disciplinary research venture between Profs Stone and Matousek, the two key researchers in this area. We now seek funding to progress this work in a timely manner by developing a novel medical diagnostic platform of major societal impact. We propose to bring together key players from multidisciplinary areas covering physical sciences, spectroscopy, radiology, cancer diagnostic and therapeutic surgery, and histopathology to exploit all of the relevant skills and develop a critical mass of expertise to tackle these challenging issues.
最近,我们在激光光谱领域开创了一系列革命性的光学技术,即深度拉曼光谱,用于生物组织的非侵入性分子探测。这些进展有可能使包括癌症诊断在内的许多医学领域发生重大变化。这些技术包括空间偏移拉曼光谱(SORS)和透射拉曼(均由申请人申请专利)。这些方法在教程评论中有详细描述:http://pubs.rsc.org/en/content/articlelanding/2016/cs/c5cs00466g。临床迫切需要对多种类型的皮下癌症进行早期客观诊断和预测可能的治疗结果。现有技术无法解决这个问题。癌症临床路径中有许多步骤,实时体内分子特异性疾病分析将产生重大影响。这将显着减少针吸活检,在乳房X线照相筛查后回忆的大约80%的人中,这一步骤是不必要的——即导致良性病变的诊断。我们的新方法将通过改进筛查或监测技术,在首次就诊时结合乳房X光检查进行更准确、更即时的诊断,从而实现更早的诊断和更好的治疗结果。其次,它可以实时评估手术切缘和治疗监测,第三,在常规手术过程中识别淋巴系统的转移侵袭。在许多其他领域,在诊所或手术室环境中对组织样本进行快速分子分析将有助于改善临床决策,例如在术前对疾病进行分期时,特别是在化疗/放疗期间非侵入性监测肿瘤反应时。显然,这些方法将通过降低癌症复发率而对患者有益。拉曼光谱是一种高度分子特异性的方法,其本身已被证明是早期上皮癌诊断的有用工具,尽管其传统形式仅限于对深度小于 1 毫米的组织表面进行采样。这项新技术解锁了对深达几厘米的组织异常的独特途径,即深度比以前使用拉曼可能实现的深度高一到两个数量级。在我们之前的项目中,我们能够从概念上证明与我们早期的可行性工作相比信号恢复有约 100 倍的改进,我们现在能够使用这种方法快速开发一个用于实际临床工具的平台。我们建议在这一领域取得重大突破,并推进诊断,特别是针对乳腺癌和淋巴结转移,最初作为重点案例研究,然后可能应用于前列腺癌(超出本提案的范围)。该领域的两位主要研究人员 Stone 教授和 Matousek 教授将作为跨学科联合研究项目对此进行探索。我们现在寻求资金,通过开发具有重大社会影响的新型医疗诊断平台来及时推进这项工作。我们建议将来自物理科学、光谱学、放射学、癌症诊断和治疗手术以及组织病理学等多学科领域的关键参与者聚集在一起,利用所有相关技能并发展大量的专业知识来解决这些具有挑战性的问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on Sample Differential Transmittance
  • DOI:
    10.1021/acs.analchem.7b01469
  • 发表时间:
    2017-09-19
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Gardner, Benjamin;Stone, Nicholas;Matousek, Pavel
  • 通讯作者:
    Matousek, Pavel
Guided principal component analysis (GPCA): a simple method for improving detection of a known analyte
引导主成分分析 (GPCA):一种改进已知分析物检测的简单方法
  • DOI:
    10.1039/d3an00820g
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gardner B
  • 通讯作者:
    Gardner B
Sensitivity of Transmission Raman Spectroscopy Signals to Temperature of Biological Tissues.
  • DOI:
    10.1038/s41598-018-25465-x
  • 发表时间:
    2018-05-30
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ghita A;Matousek P;Stone N
  • 通讯作者:
    Stone N
Noninvasive simultaneous monitoring of pH and depth using surface-enhanced deep Raman spectroscopy
  • DOI:
    10.1002/jrs.5875
  • 发表时间:
    2020-03-20
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gardner, Benjamin;Stone, Nicholas;Matousek, Pavel
  • 通讯作者:
    Matousek, Pavel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Stone其他文献

Current practice in management of high-grade dysplasia in Barrett's oesophagus: The real problem
  • DOI:
    10.1016/j.pdpdt.2008.01.004
  • 发表时间:
    2008-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hugh Barr;Nicholas Stone;Ding C.D. Ding;Catherine Kendall
  • 通讯作者:
    Catherine Kendall
Anisotropy visualisation from X-ray diffraction of biological apatite in mixed phase calcified tissue samples
混合相钙化组织样本中生物磷灰石 X 射线衍射各向异性可视化
  • DOI:
    10.1038/s41598-025-88940-2
  • 发表时间:
    2025-02-14
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Robert Scott;Iain D. Lyburn;Eleanor Cornford;Pascaline Bouzy;Nicholas Stone;Charlene Greenwood;Sarah Gosling;Emily L. Arnold;Ihsanne Bouybayoune;Sarah E. Pinder;Keith Rogers
  • 通讯作者:
    Keith Rogers
Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging
利用中红外化学病理组织学成像的深度学习预测早期乳腺癌治疗后的复发
  • DOI:
    10.1038/s41698-024-00772-x
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Abigail Keogan;Thi Nguyet Que Nguyen;Pascaline Bouzy;Nicholas Stone;Karin Jirstrom;Arman Rahman;William M. Gallagher;Aidan D. Meade
  • 通讯作者:
    Aidan D. Meade

Nicholas Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Stone', 18)}}的其他基金

Raman Nanotheranostics - RaNT - developing the targeted diagnostics and therapeutics of the future by combining light and functionalised nanoparticles
拉曼纳米治疗学 - RaNT - 通过结合光和功能化纳米粒子来开发未来的靶向诊断和治疗
  • 批准号:
    EP/R020965/1
  • 财政年份:
    2018
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Research Grant
A novel Deep Raman spectroscopy platform for non-invasive in situ molecular analysis of disease specific tissue compositional changes.
一种新型深度拉曼光谱平台,用于对疾病特定组织成分变化进行非侵入性原位分子分析。
  • 批准号:
    EP/K020374/1
  • 财政年份:
    2013
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Research Grant

相似国自然基金

基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
  • 批准号:
    61170020
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Deep Web敏感聚合信息保护方法研究
  • 批准号:
    61003054
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
  • 批准号:
    61070122
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bowel Cancer screening using tissue and faecal sample analysis using the Deep-UV-Raman Spectroscopy and Machine Learning Analysis (BODICA II)
使用深紫外拉曼光谱和机器学习分析 (BODICA II) 分析组织和粪便样本进行肠癌筛查
  • 批准号:
    10067160
  • 财政年份:
    2023
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Collaborative R&D
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
  • 批准号:
    10413606
  • 财政年份:
    2022
  • 资助金额:
    $ 152.78万
  • 项目类别:
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
  • 批准号:
    10657760
  • 财政年份:
    2022
  • 资助金额:
    $ 152.78万
  • 项目类别:
High-resolution structural analysis of huge biomolecule based on gas phase resonance Raman spectroscopy using deep ultraviolet - visible laser excitation
基于深紫外-可见激光激发气相共振拉曼光谱的巨大生物分子高分辨率结构分析
  • 批准号:
    19K15509
  • 财政年份:
    2019
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Compact Deep UV Resonant Raman Instrument for in line measurement of proteins
用于蛋白质在线测量的紧凑型深紫外共振拉曼仪器
  • 批准号:
    600399
  • 财政年份:
    2019
  • 资助金额:
    $ 152.78万
  • 项目类别:
    EU-Funded
Novel Deep Learning for Detecting Cancer cells with Raman Spectroscopy
利用拉曼光谱检测癌细胞的新型深度学习
  • 批准号:
    2327885
  • 财政年份:
    2019
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Studentship
GCR: Understanding Virus Evolution Through Deep Raman Spectroscopy
GCR:通过深度拉曼光谱了解病毒进化
  • 批准号:
    1934977
  • 财政年份:
    2019
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Continuing Grant
An analysis of cellular mechanoresponse by Raman spectroscopy and deep laerning
通过拉曼光谱和深度学习分析细胞机械反应
  • 批准号:
    18K04977
  • 财政年份:
    2018
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural characterization of the work-altered layer by surface-enhanced Raman scattering of an island-like metallic thin film with deep-ultraviolet excitation.
通过深紫外激发下岛状金属薄膜的表面增强拉曼散射来表征功变层的结构。
  • 批准号:
    17K06040
  • 财政年份:
    2017
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep-UV resonance Raman scattering for nucleotide distribution imaging of cells
用于细胞核苷酸分布成像的深紫外共振拉曼散射
  • 批准号:
    25871127
  • 财政年份:
    2013
  • 资助金额:
    $ 152.78万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了