Ceramics production: COld-cOntainer processing for Long-wavelength mid-infrared fibreoptics. (COOL)
陶瓷生产:长波长中红外光纤的冷容器加工。
基本信息
- 批准号:EP/P013708/1
- 负责人:
- 金额:$ 84.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are making new types of optical fibre that transmit, and can emit, long-wavelength mid-infrared light. Why? Mid-infrared light-waves oscillate at frequencies within a range that matches the frequency-range of characteristic vibrations of molecular bonds. The molecular bond vibration increases in amplitude on (resonantly) absorbing mid-infrared light of the same frequency. For the first time, we made a record optical fibre that, on being laser pumped, emitted a record broad range of frequencies of mid-infrared light: 'a mid-infrared rainbow' called a mid-infrared supercontinuum (SC) of light [1]. Shining this broad SC of mid-infrared light onto a molecular sample, and collecting the light again after its interaction with the sample, reveals some mid-infrared frequencies are diminished in brightness, gone to stimulate particular molecular vibrations in the sample. This is called mid-infrared spectroscopy and it allows us to sense and image the molecular makeup of a molecular sample, including numerous molecular gases, liquids and solids as diverse as: greenhouse-gases, explosives, food and biological tissue. To date, because mid-infrared light sources have been characteristically weak the source/sample/ detector have all had to be in close proximity. The new bright [1,2] mid-infrared fibre SC sources are a disruptive technology which will help establish a new paradigm in PORTABLE, REAL-TIME mid-infrared molecular sensing and imaging, opening up the mid-infrared spectral region for more general use. We are developing this new paradigm through focused development of portable fibre devices and systems which are robust, functionally designed, safe, compact and cost effective, and which are based on mid-infrared optical fibers. Hyper-pure optical fibres are required to increase the efficiency of the SC sources and to realise long-wavelength mid-infrared fibre lasers, and also for passive routeing of mid-infrared light to where it is needed. Currently, making and purifying the long-wavelength mid-infrared optical fibres is rather intricate and takes about 8 man-weeks. This long-winded processing could be hugely cut, and hyper-purity improved, by applying the innovative processing methods to be developed in this Project. Currently, resistive heating is used for glass-melting and purification but production times are exceedingly long. We demonstrated for the first time [3] that microwave-assisted heating can achieve high-speed glass-melting. In this Project, we will develop the microwave approach, optimise microwave-cavities and carry out rapid glass melting and follow-on rapid glass hyper-purification via microwave-heating.Why is the microwave heating so fast? -because the microwaves directly couple to the mid-infrared glass melt and not to the container, which remains cold and uncompromised. Far higher glass-melting temperatures can be attained than normal which: (i) gives faster melt-homogenisation (0.5 h instead of 36 h) and (ii) facilitates high vapour pressures for fast multi-distillations of the glass-melt.This Project aims to achieve novel cold-container processing to enable the unprecedented rapid manufacture of long-wavelength mid-infrared selenide and telluride chalcogenide glasses of new levels of hyper-purity needed to make new long-wavelength mid-infrared glass fibre-optic devices for disruptive portable, real-time molecular sensing and imaging. In this Project we will demonstrate, by means of new rapid processing:i. new hyper-pure fibres for conduiting long-wavelength mid-infrared light;ii. new hyper-pure long-wavelength mid-infrared SC fibre sources for efficient portable molecular sensing andiii. first time long-wavelength mid-infrared fibre lasers for pumping the fibre SC.REFERENCES1. Petersen, Tang, Benson, Seddon et al., NAT. PHOTON. 8 830(2014).2. Yu et al., Opt. Lett., 40(6)1081(2015).3. Prasad, Seddon et al., J. Non-Cryst. Solids, 356(41-42) 2134(2010).
我们正在制造新型的光纤,可以传输并发射长波长的中红外光。为什么?为什么?中红外光波振荡的频率范围与分子键特征振动的频率范围相匹配。分子键振动在(共振)吸收相同频率的中红外光时振幅增加。这是我们第一次制造出一种记录光纤,在激光泵浦下,它发射出创纪录的宽频率范围的中红外光:“中红外彩虹”,称为中红外超连续谱(SC)光[1]。将这种宽SC的中红外光照射到分子样品上,并在其与样品相互作用后再次收集光,揭示了一些中红外频率的亮度降低,去刺激样品中的特定分子振动。这被称为中红外光谱,它使我们能够感知和成像分子样品的分子组成,包括许多分子气体,液体和固体,如温室气体,爆炸物,食物和生物组织。到目前为止,由于中红外光源的特性很弱,因此源/样品/检测器都必须非常接近。新的明亮[1,2]中红外光纤SC光源是一项颠覆性技术,将有助于建立便携式实时中红外分子传感和成像的新范式,为更广泛的应用开辟中红外光谱区域。我们正在通过集中开发便携式光纤设备和系统来开发这种新的范例,这些设备和系统坚固耐用,功能设计,安全,紧凑和成本效益高,并且基于中红外光纤。需要超纯光纤来提高SC源的效率并实现长波长中红外光纤激光器,并且还用于将中红外光被动路由到需要的地方。目前,制作和纯化长波长中红外光纤相当复杂,需要大约8个人工周。通过应用本项目开发的创新加工方法,可以大大减少这种冗长的加工过程,并提高超纯度。目前,电阻加热用于玻璃熔化和纯化,但生产时间非常长。我们首次证明了微波辅助加热可以实现高速玻璃熔化。在本项目中,我们将开发微波方法,优化微波腔,并通过微波加热进行快速玻璃熔化和后续的快速玻璃超净化。为什么微波加热如此之快?- 因为微波直接耦合到中红外玻璃熔体而不是容器,容器保持冷且不受损害。可以获得比正常情况高得多的玻璃熔化温度,其中:(i)提供更快的熔融均化该项目旨在实现新型冷容器工艺,以前所未有的速度快速制造新水平的超红外长波长中红外硒化物和碲化物硫属化物玻璃。制造新型长波中红外玻璃光纤设备所需的纯度,用于破坏性便携式实时分子传感和成像。在这个项目中,我们将通过新的快速处理来证明:i.用于吸收长波长中红外光的新型超纯纤维;ii.新型超纯长波长中红外SC光纤源,用于高效便携式分子传感;第一次长波长中红外光纤激光器,用于泵浦光纤SC。Petersen,Tang,Benson,Seddon等人,纳特·光子。8 830(2014). Yu等人,可选信函:40(6)1081(2015). Prasad,Seddon等人,J. Non-Cryst. Solids,356(41-42)2134(2010)中所述。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-spectroscopic sensing enabled by electro-optical reservoir computer
由光电储层计算机实现的非光谱传感
- DOI:10.48550/arxiv.2202.01763
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anufriev G
- 通讯作者:Anufriev G
Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers.
掺杂 Sm3 的硒化物硫族化物玻璃纤维在包括超过 7 微米的波长下的实验光致发光和寿命。
- DOI:10.1364/oe.383033
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Crane RW
- 通讯作者:Crane RW
Non-spectroscopic sensing enabled by an electro-optical reservoir computer
由光电储层计算机实现的非光谱传感
- DOI:10.1364/ome.449036
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Anufriev G
- 通讯作者:Anufriev G
Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method
- DOI:10.1007/s11082-017-1057-9
- 发表时间:2017-06
- 期刊:
- 影响因子:3
- 作者:Y. Fang;D. Jayasuriya;D. Furniss;Z. Tang;Ł. Sójka;C. Markos;S. Sujecki;A. Seddon;T. Benson
- 通讯作者:Y. Fang;D. Jayasuriya;D. Furniss;Z. Tang;Ł. Sójka;C. Markos;S. Sujecki;A. Seddon;T. Benson
Determining the continuous thermo-optic coefficients of chalcogenide glass thin films in the MIR region using FTIR transmission spectra.
- DOI:10.1364/oe.27.022275
- 发表时间:2019-08
- 期刊:
- 影响因子:3.8
- 作者:Yuanrong Fang;D. Furniss;D. Jayasuriya;H. Parnell;Zhuoqi Tang;A. Seddon;T. Benson
- 通讯作者:Yuanrong Fang;D. Furniss;D. Jayasuriya;H. Parnell;Zhuoqi Tang;A. Seddon;T. Benson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Seddon其他文献
Numerical investigation of mid-infrared emission from Pr $$^{3+}$$ doped GeAsGaSe fibre
- DOI:
10.1007/s11082-013-9776-z - 发表时间:
2013-09-26 - 期刊:
- 影响因子:4.000
- 作者:
Ayodele Oladeji;Lukasz Sojka;Zhuoqi Tang;David Furniss;Andrew Phillips;Angela Seddon;Trevor Benson;Slawomir Sujecki - 通讯作者:
Slawomir Sujecki
Angela Seddon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Seddon', 18)}}的其他基金
Ceramic SHaping: extrusion of glAss Preforms for new fibres in hEalthcare (SHAPE)
陶瓷成型:用于医疗保健新纤维的玻璃预成型件的挤出 (SHAPE)
- 批准号:
EP/T010762/1 - 财政年份:2020
- 资助金额:
$ 84.26万 - 项目类别:
Research Grant
Development of infrared optical fibre devices and systems for applications in medical diagnosis.
开发用于医疗诊断的红外光纤器件和系统。
- 批准号:
G0701869/1 - 财政年份:2008
- 资助金额:
$ 84.26万 - 项目类别:
Research Grant
相似国自然基金
交货期敏感的单件模式产品供应链的协调优化
- 批准号:70871060
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
供应链中生产和配送联合排序和调度的模型、算法及应用
- 批准号:70372058
- 批准年份:2003
- 资助金额:14.0 万元
- 项目类别:面上项目
相似海外基金
Effects and mechanisms of cold-induced stress on the development of Chlamydia muridarum genital infection in a mouse model
寒冷应激对鼠衣原体生殖道感染小鼠模型的影响及机制
- 批准号:
10730819 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
Beetroot Juice Supplement for Boosting Mucosal Immunity – The NO Cold Study
甜菜根汁补充剂可增强粘膜免疫力 — NO 感冒研究
- 批准号:
10645991 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
Mechanism of a novel approach for platelet cold storage
血小板冷藏新方法的机制
- 批准号:
10494385 - 财政年份:2022
- 资助金额:
$ 84.26万 - 项目类别:
Mechanics and dynamics of mineral dust production within cold climates
寒冷气候下矿物粉尘产生的力学和动力学
- 批准号:
RGPIN-2022-03785 - 财政年份:2022
- 资助金额:
$ 84.26万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of a novel approach for platelet cold storage
血小板冷藏新方法的机制
- 批准号:
10682608 - 财政年份:2022
- 资助金额:
$ 84.26万 - 项目类别:
A novel gene therapy approach targeting STING-silenced cold tumors
一种针对 STING 沉默冷肿瘤的新型基因治疗方法
- 批准号:
10577939 - 财政年份:2022
- 资助金额:
$ 84.26万 - 项目类别:
Production of cold ion plasma for studying dynamics of high quality beams
产生用于研究高质量光束动力学的冷离子等离子体
- 批准号:
21H03737 - 财政年份:2021
- 资助金额:
$ 84.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanisms and Ex Vivo Repair of Cold-Storage Injury in Human Kidney Allografts
人肾同种异体移植物冷藏损伤的机制和离体修复
- 批准号:
10116374 - 财政年份:2020
- 资助金额:
$ 84.26万 - 项目类别:
Mechanisms and Ex Vivo Repair of Cold-Storage Injury in Human Kidney Allografts
人肾同种异体移植物冷藏损伤的机制和离体修复
- 批准号:
10338146 - 财政年份:2020
- 资助金额:
$ 84.26万 - 项目类别:
Technology Development for Production of High Performance Composite Coatings by Cold Spray
冷喷涂高性能复合涂层生产技术开发
- 批准号:
20K05114 - 财政年份:2020
- 资助金额:
$ 84.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)