Ceramic SHaping: extrusion of glAss Preforms for new fibres in hEalthcare (SHAPE)
陶瓷成型:用于医疗保健新纤维的玻璃预成型件的挤出 (SHAPE)
基本信息
- 批准号:EP/T010762/1
- 负责人:
- 金额:$ 98.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ceramic SHaping: extrusion of glAss Preforms for new fibres in hEalthcare (SHAPE)The Aim of this Project is to achieve unprecedented advances in novel glass extrusion in order to make brand new shapes of glass preforms. These preforms are needed for drawing to next-generation structured glass fibres for two targeted healthcare applications - bioimplant glass fibre for therapeutics and MIR (mid-infrared) glass fibre lasers for cancer detection.1. Glass extrusionWhat is glass extrusion? Heat glass above its glass transition temperature (Tg) and a viscous liquid forms. This liquid has treacle-like consistency and can be shaped by forcing it through a shaped metal die. For instance, a die with a hole produces a rod-shaped extrudate. The extruded rod is allowed to cool, and stiffens at Tg to form a glass-rod preform, which is taken to a draw tower and, in a separate operation, drawn to form glass fibre of the ~ diameter of a human hair. Co-extrusion, through the hole in the die, of two glass billets of different glass composition, but with matched thermal properties, forms a glass-rod preform with an internal core of different glass through it. Along part of the preform length, the internal core of glass occupies approx. constant 85 % of the diameter. When this is drawn to fibre, the fibre similarly has a large core of glass occupying 85 % of the diameter. The core/cladding interface is excellent optical quality, having mated during the extrusion itself. However, only 20% of the extruded rod preform is usable, as the core inside the rest of the preform is too tapered. Extrusion through a spider-die can produce a glass preform in the shape of a small-orificed tube. If a cane of different glass is now threaded through this tube, this whole can be drawn to fibre with a small core running through it and occupying less than ~ 20 % of the fibre diameter. Such small core fibre is vital to achieve fibre lasing. However, this processing route makes inferior optical quality core/cladding interfaces and can take several weeks.2. MIR fibreThis Project will enable straightforward manufacture of high quality small-core fibre vital for MIR-glass fibre lasers. We will extrude small-core glass-rod preforms with core less than or equal to 20 % diameter, constant over least 50 % of the preform, with core/cladding mating during extrusion to give excellent optical quality of the core/cladding interface. To achieve this breakthrough, we will invoke, for the first time, extrusion of pre-shaped glass billets, and also indirect glass extrusion - overlooked since its invention ~50 years' ago. MIR light distinguishes diseased tissue, including cancer, by detecting the molecular-makeup of the tissue. Using MIR fibre-optics will enable a new type of endoscopy so that during cancer surgery the surgeon can guide MIR fibre laser light onto the tissue and collect the reflected light to molecularly map the tissue and instantly tell if all cancer is removed. Compact MIR fibreoptic systems will be enabled by using MIR broad- and narrow-band fibre lasers; for these, small-core MIR fibre is essential and this Project will enable the new extrusion technology to make this possible. 3. Biocompatible, therapeutic fibreThe human body does not reject biocompatible fibre. We will extrude new types of multi-layered and holey biocompatible glass preforms for bioimplant fibre of finely controlled dissolution rate in the body. This is for therapeutic drug and ion release from fibre at the site of body infection and for controlled dissolution fibre-biocomposites to implant in the body to support bone-healing. 4. Project synergyThis Project will encourage cross-fertilisation of ideas, for instance a bio-compatible glass cladding for MIR glass fibres may be beneficial and using biocompatible glass fibres for NIR (near-infrared) light transmission has the potential to allow in situ monitoring of tissue health in vivo.
陶瓷成型:玻璃预成型件的挤出用于中空纤维(SHAPE)该项目的目的是在新型玻璃挤出方面取得前所未有的进展,以制造全新形状的玻璃预成型件。这些预成型件用于拉制下一代结构化玻璃纤维,用于两种目标医疗保健应用-用于治疗的生物植入玻璃纤维和用于癌症检测的MIR(中红外)玻璃纤维激光器。1.玻璃挤出什么是玻璃挤出?将玻璃加热到其玻璃化转变温度(Tg)以上,形成粘性液体。这种液体具有糖浆状的稠度,可以通过迫使其通过成形的金属模具来成形。例如,具有孔的模具产生棒状挤出物。使挤出的棒冷却,并在Tg下硬化以形成玻璃棒预成型件,将其带到拉制塔,并在单独的操作中拉制以形成人头发直径的玻璃纤维。两种玻璃成分不同但热性能匹配的玻璃坯料通过模具中的孔共挤出,形成具有不同玻璃内核的玻璃棒预制件。直径的85%不变。当将其拉伸成纤维时,纤维同样具有占直径85%的大玻璃芯。纤芯/包层界面具有优异的光学质量,在挤出过程中进行了匹配。然而,只有20%的挤压棒预成型件是可用的,因为预成型件的其余部分内的芯部太锥形。通过蜘蛛模头的挤出可以生产出小直径管形状的玻璃预成型件。如果现在将一根不同的玻璃棒穿过该管,则整个玻璃棒可以被拉成纤维,其中有一个小芯贯穿其中,并且占纤维直径的不到~ 20%。这种小芯光纤对于实现光纤激光至关重要。然而,这种工艺路线会使纤芯/包层界面的光学质量较差,并且可能需要数周时间。MIR光纤该项目将使直接制造高质量的小芯光纤对MIR玻璃光纤激光器至关重要。我们将挤出小芯玻璃棒预制件,芯直径小于或等于20%,在预制件的至少50%上保持恒定,在挤出过程中芯/包层匹配,以提供优异的芯/包层界面光学质量。为了实现这一突破,我们将首次采用预成型玻璃坯的挤出,以及间接玻璃挤出--自其发明以来一直被忽视的技术--约50年前。MIR光通过检测组织的分子组成来区分病变组织,包括癌症。使用MIR光纤将实现一种新型的内窥镜检查,以便在癌症手术期间,外科医生可以将MIR光纤激光引导到组织上,并收集反射光以分子映射组织,并立即判断是否所有癌症都被切除。紧凑型MIR光纤系统将通过使用MIR宽带和窄带光纤激光器实现;对于这些系统,小芯MIR光纤是必不可少的,该项目将使新的挤出技术成为可能。3.生物相容性治疗纤维人体不会排斥生物相容性纤维。我们将挤出新型多层多孔生物相容性玻璃预制件,用于生物植入纤维,在体内精确控制溶解速率。这是用于在身体感染部位从纤维释放治疗药物和离子,以及用于植入体内以支持骨愈合的受控溶解纤维生物复合材料。4.项目协同本项目将鼓励各种想法的相互交流,例如,MIR玻璃纤维的生物相容性玻璃包层可能是有益的,而使用生物相容性玻璃纤维进行NIR(近红外)光传输有可能实现对体内组织健康的原位监测。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-spectroscopic sensing enabled by electro-optical reservoir computer
由光电储层计算机实现的非光谱传感
- DOI:10.48550/arxiv.2202.01763
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anufriev G
- 通讯作者:Anufriev G
Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers.
掺杂 Sm3 的硒化物硫族化物玻璃纤维在包括超过 7 微米的波长下的实验光致发光和寿命。
- DOI:10.1364/oe.383033
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Crane RW
- 通讯作者:Crane RW
(INVITED)Mid-infrared photoluminescence in Ce3+ doped selenide-chalcogenide glass and fiber
(邀请)Ce3 掺杂硒化物硫属化物玻璃和光纤中的中红外光致发光
- DOI:10.1016/j.optmat.2023.113543
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Nunes J
- 通讯作者:Nunes J
Non-spectroscopic sensing enabled by an electro-optical reservoir computer
由光电储层计算机实现的非光谱传感
- DOI:10.1364/ome.449036
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Anufriev G
- 通讯作者:Anufriev G
Future of optical glass education
光学玻璃教育的未来
- DOI:10.1364/ome.457792
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Ballato J
- 通讯作者:Ballato J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Seddon其他文献
Numerical investigation of mid-infrared emission from Pr $$^{3+}$$ doped GeAsGaSe fibre
- DOI:
10.1007/s11082-013-9776-z - 发表时间:
2013-09-26 - 期刊:
- 影响因子:4.000
- 作者:
Ayodele Oladeji;Lukasz Sojka;Zhuoqi Tang;David Furniss;Andrew Phillips;Angela Seddon;Trevor Benson;Slawomir Sujecki - 通讯作者:
Slawomir Sujecki
Angela Seddon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Seddon', 18)}}的其他基金
Ceramics production: COld-cOntainer processing for Long-wavelength mid-infrared fibreoptics. (COOL)
陶瓷生产:长波长中红外光纤的冷容器加工。
- 批准号:
EP/P013708/1 - 财政年份:2017
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
Development of infrared optical fibre devices and systems for applications in medical diagnosis.
开发用于医疗诊断的红外光纤器件和系统。
- 批准号:
G0701869/1 - 财政年份:2008
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
相似海外基金
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Fellowship Award
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
CAREER: SmartCAD: Shaping The Next Revolution in Computer-Aided Design
职业生涯:SmartCAD:塑造计算机辅助设计的下一场革命
- 批准号:
2339249 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Continuing Grant
AUGSOC - Bringing the Augmented Society to Reality: Shaping Perception, Resilience, and Rights for Everyday AR
AUGSOC - 将增强社会变为现实:塑造日常 AR 的感知、弹性和权利
- 批准号:
EP/Z000068/1 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
Shaping The Nucleus, For Better Or Worse
塑造核心,无论好坏
- 批准号:
BB/Y004205/1 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
Shaping the neutrophil: morphological, genomic, and functional maturation
塑造中性粒细胞:形态、基因组和功能成熟
- 批准号:
BB/Y004752/1 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Research Grant
血管網組織移植によるfree-shaping bone graftの開発
利用血管网组织移植开发自由成形骨移植物
- 批准号:
24K12838 - 财政年份:2024
- 资助金额:
$ 98.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of somatic X-chromosome alterations in shaping cancer sex differences
探讨体细胞 X 染色体改变在塑造癌症性别差异中的作用
- 批准号:
10780163 - 财政年份:2023
- 资助金额:
$ 98.16万 - 项目类别:
SBIR Phase I: Improving indoor agriculture grow light efficiency with adaptive light shaping
SBIR 第一阶段:通过自适应光整形提高室内农业种植光效率
- 批准号:
2304339 - 财政年份:2023
- 资助金额:
$ 98.16万 - 项目类别:
Standard Grant
The evolution of venom and its role in shaping biodiversity
毒液的进化及其在塑造生物多样性中的作用
- 批准号:
DE230100003 - 财政年份:2023
- 资助金额:
$ 98.16万 - 项目类别:
Discovery Early Career Researcher Award