Thin Film Acoustic Wave Platform for Conformable and Mechanically Flexible Biosensors

用于一致性和机械柔性生物传感器的薄膜声波平台

基本信息

  • 批准号:
    EP/P018998/1
  • 负责人:
  • 金额:
    $ 44.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

In this project, we will research a new platform technology to manufacture flexible devices enabling non-invasive and rapid medical diagnostics. Due to global ageing and the increased burden of cancer/chronic diseases, there is a huge demand worldwide for efficient and inexpensive mobile healthcare, e-care, and home/point-of-care systems. These will not only be able to stop the cycle of transmission in infectious diseases, thus reducing their impact, but also allow us to monitor health conditions frequently (e.g. with wearable sensors) and tailor treatment as required, thus providing more efficient therapies. A key challenge for such devices is to integrate all the functions required to perform advanced diagnostics, such as sample manipulation, purification and sensing, onto a low-cost, mechanically flexible diagnostic/treatment platform, such that testing can be performed rapidly and frequently (for example in wearable patch applications). To be widely and effectively adopted, flexible diagnostics need to be conformable to diagnostic/treatment surfaces or to adapt to changes in surface shape (such as the human body), as well as to be compatible with large scale and low cost manufacturing technologies such as roll-to-roll/printing, whilst providing versatile integrated sampling/purification/sensing functions. These flexible and body comfortable sensors are becoming a promising route for new generations of personalised biomedical tools. Here, we will use the mechanical energy propagated by acoustic waves on the surface of flexible foils, onto which we deposited a structured piezo-electric thin film. By controlling the orientation of the film, we will be able, for the first time, to integrate a large variety of fluid manipulation functions together with highly sensitive sensing, using a single technology. This will enable us to simplify design and manufacturing constraints significantly, leading to the potential of using large scale and low-cost manufacturing, drastically enhancing the availability and usefulness of personalised diagnostic devices. Our platform is based on versatile acoustic wave modes (integrating both microfluidics and sensing) compatible with roll-to-roll manufacturing and thin film/microfabrication technologies. In the past decades, a large number of microfluidic and molecular sensing technologies have been developed based on integrated lab-on-chip, however only a few have been successfully introduced into the market, with one key reason for this attrition being that sampling (sample selection, collection and preparation, e.g., mixing, purification, filtering, washing, and then delivering to sensors) has not been successfully integrated into complete diagnosis systems in a simple, low-cost and efficient manner. In particular, there have been significant challenges in the integration of microfluidics (for sampling) with biosensing (detection) technologies, due to the different technologies that each function relies on, rendering the instrumentation too complex for truly portable and conformable systems. In this research, in partnership with industry, we will develop an innovative solution to integrate different acoustic modalities, which can provide different actuations of the sample (sampling, purification, sensing), using the formation of inclined angled ZnO thin films, such that we are able to generate and control different wave modes, i.e., longitudinal and shear waves on one platform. This will realise low-cost/flexible acoustic wave devices with integrated sensing and microfluidic functions.
在这个项目中,我们将研究一种新的平台技术,以制造灵活的设备,实现非侵入性和快速的医疗诊断。由于全球老龄化和癌症/慢性疾病负担的增加,全球范围内对高效且廉价的移动的医疗保健、电子护理和家庭/护理点系统存在巨大需求。这不仅能够阻止传染病的传播周期,从而减少其影响,而且还使我们能够经常监测健康状况(例如使用可穿戴传感器)并根据需要定制治疗,从而提供更有效的治疗方法。这种设备的一个关键挑战是将执行高级诊断所需的所有功能(例如样品操作、纯化和感测)集成到低成本、机械灵活的诊断/治疗平台上,使得可以快速和频繁地执行测试(例如在可穿戴贴片应用中)。为了被广泛和有效地采用,灵活的诊断需要与诊断/治疗表面相适应或适应表面形状(例如人体)的变化,以及与大规模和低成本的制造技术(例如卷对卷/打印)兼容,同时提供通用的集成采样/净化/感测功能。这些灵活和身体舒适的传感器正在成为新一代个性化生物医学工具的一条有前途的路线。 在这里,我们将使用弹性箔表面上的声波传播的机械能,在其上我们沉积了结构化的压电薄膜。通过控制薄膜的方向,我们将首次能够使用单一技术将各种流体操纵功能与高灵敏度传感集成在一起。这将使我们能够大大简化设计和制造限制,从而有可能使用大规模和低成本制造,大大提高个性化诊断设备的可用性和实用性。我们的平台基于多功能声波模式(集成微流体和传感),与卷对卷制造和薄膜/微加工技术兼容。在过去的几十年中,已经基于集成的芯片实验室开发了大量的微流体和分子传感技术,然而只有少数已经成功地引入市场,这种损耗的一个关键原因是采样(样品选择、收集和制备,例如,混合、纯化、过滤、洗涤,然后输送到传感器)还没有以简单、低成本和有效的方式成功地集成到完整的诊断系统中。特别是,由于每个功能所依赖的不同技术,在微流体(用于采样)与生物传感(检测)技术的集成方面存在重大挑战,使得仪器对于真正便携和舒适的系统来说过于复杂。在这项研究中,我们将与工业界合作,开发一种创新的解决方案来整合不同的声学模态,它可以提供不同的样品驱动(采样,纯化,传感),使用倾斜角度的ZnO薄膜的形成,这样我们就能够产生和控制不同的波模式,即,纵波和横波在一个平台上。这将实现具有集成传感和微流体功能的低成本/灵活的声波设备。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-Dimensional Simulation Platform for Optimal Designs of the MEMS Microphone
MEMS麦克风优化设计的三维仿真平台
  • DOI:
    10.3389/fmats.2022.959480
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Cai J
  • 通讯作者:
    Cai J
Acoustic Waves for Active Reduction of Contact Time in Droplet Impact
  • DOI:
    10.1103/physrevapplied.14.024029
  • 发表时间:
    2020-08-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Biroun, Mehdi H.;Li, Jie;Fu, YongQing
  • 通讯作者:
    Fu, YongQing
Si-Cu nanocomposite as an effective sensing layer for H2S based on quartz surface acoustic wave sensors
Si-Cu纳米复合材料作为基于石英表面声波传感器的H2S有效传感层
  • DOI:
    10.1016/j.sna.2023.114225
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Che J
  • 通讯作者:
    Che J
Computational and experimental analysis of droplet transportation/jetting behaviours driven by thin film surface acoustic waves
  • DOI:
    10.1016/j.sna.2019.111624
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Biroun, M. H.;Rahmati, M. T.;Fu, Y. Q.
  • 通讯作者:
    Fu, Y. Q.
Numerical and experimental investigations of interdigital transducer configurations for efficient droplet streaming and jetting induced by surface acoustic waves
  • DOI:
    10.1016/j.ijmultiphaseflow.2020.103545
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Biroun, Mehdi H.;Rahmati, Mohammad;Qing Fu, Yong
  • 通讯作者:
    Qing Fu, Yong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Fu其他文献

Project Characteristics, Organizational Structure, and Managerial Incentives
项目特点、组织结构和管理激励
Consideration of the Role of Micro-Porous Layer on Liquid Water Distribution in Polymer Electrolyte Fuel Cells
聚合物电解质燃料电池中微孔层对液态水分布作用的思考
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Preston;Richard Fu;U. Pasaogullari;D. Hussey;D. Jacobson
  • 通讯作者:
    D. Jacobson
On the cointegration of international stock indices
  • DOI:
    10.1007/s12197-010-9136-9
  • 发表时间:
    2010-04-30
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Richard Fu;Marco Pagani
  • 通讯作者:
    Marco Pagani
Price momentum and the premium for meeting or beating analysts' forecasts of earnings
价格动能以及达到或超过分析师盈利预测的溢价
  • DOI:
    10.1016/j.adiac.2018.07.003
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Christopher T. Edmonds;J. Edmonds;Richard Fu;David S. Jenkins
  • 通讯作者:
    David S. Jenkins
Partner Proximity and Relationship-Specific Capital in Joint R&D Ventures
联合 R 中的合作伙伴邻近度和关系特定资本
  • DOI:
    10.1177/05694345231172167
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conrad S. Ciccotello;Richard Fu
  • 通讯作者:
    Richard Fu

Richard Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Surface Acoustic Wave mediated magneto elastic investigation of magnetic thin film systems
磁性薄膜系统的表面声波介导磁弹性研究
  • 批准号:
    391592414
  • 财政年份:
    2018
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Research Grants
PFI:AIR - TT: Lateral Field Excited Acoustic Wave Sensor for Monitoring Thin Film Properties in Solid State Devices
PFI:AIR - TT:横向场激励声波传感器,用于监测固态器件中的薄膜特性
  • 批准号:
    1701087
  • 财政年份:
    2017
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant
Development of next generation acoustic resonance microscope which can measure sound velocity and thickness of thin film simultaneously
开发可同时测量声速和薄膜厚度的下一代声共振显微镜
  • 批准号:
    15H03889
  • 财政年份:
    2015
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Loss reduction of longitudinal-type leaky surface acoustic wave by loading with high-velocity thin film and its application to high-frequency filter
高速薄膜加载降低纵向漏声表面波损耗及其在高频滤波器中的应用
  • 批准号:
    26420269
  • 财政年份:
    2014
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Personal radiation biodosimetry using thin-film acoustic resonators
SBIR 第一阶段:使用薄膜声谐振器进行个人辐射生物剂量测定
  • 批准号:
    1314228
  • 财政年份:
    2013
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant
Creation of nanofiber-based porous thin-film acoustic materials
创建基于纳米纤维的多孔薄膜声学材料
  • 批准号:
    23656347
  • 财政年份:
    2011
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
SBIR Phase I: MEMS-Based System for Particulate Matter Pollution Monitoring Using Thin-Film Bulk Acoustic Wave Resonators (FBARs)
SBIR 第一阶段:基于 MEMS 的颗粒物污染监测系统,使用薄膜体声波谐振器 (FBAR)
  • 批准号:
    0839783
  • 财政年份:
    2009
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant
Microwave bandpass filters using zinc oxide thin film bulk acoustic resonators
使用氧化锌薄膜体声谐振器的微波带通滤波器
  • 批准号:
    314655-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Special Research Opportunity Program - Inter-American Collaboration in Materials Research
Microwave bandpass filters using zinc oxide thin film bulk acoustic resonators
使用氧化锌薄膜体声谐振器的微波带通滤波器
  • 批准号:
    314655-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Special Research Opportunity Program - Inter-American Collaboration in Materials Research
The preparation of a surface acoustic wave assist thin film phase grating and the application to the ultra micro optical system.
声表面波辅助薄膜相位光栅的制备及其在超微光学系统中的应用。
  • 批准号:
    10450116
  • 财政年份:
    1998
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了