Darcy-scale dynamics of microscopically fluctuating interfaces
微观波动界面的达西尺度动力学
基本信息
- 批准号:EP/P020860/1
- 负责人:
- 金额:$ 56.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a recent Government report "UK Oil and Gas - Business and Government Action", it is stressed that "70% of British energy requirements [are] still likely to be met by oil and gas into the 2040s", so that strategically "maximizing domestic supplies of oil and gas [...] leads to increased resilience and security for the UK's energy needs when compared with imports". At the same time, according to the World Energy Outlook Report of 2014, existing methods of secondary oil recovery still leave from 30 to 60% of oil unrecovered when an oilfield is abandoned as 'exhausted' and the exploration moves to a new one. This is both inefficient and environmentally unfriendly. To reach the unrecovered oil and reduce the pace of expansion into new oilfields until renewable power generation becomes an economically viable alternative, it is necessary to develop efficient methods of Enhanced Oil Recovery (EOR). EOR is focused on recovering oil blobs trapped in the porous rock, known as 'ganglia', that remain stuck after the water-flooding 'secondary recovery stage'. The aim of EOR is to mobilize the ganglia by some additional physical mechanisms. The opposite problem is carbon dioxide sequestration; a process aimed at reducing the pace of climate change. There, it is absolutely essential that carbon dioxide volumes pumped into a porous layer remain there without escaping back into the atmosphere. In each case, the trial-and-error assessment of the efficiency of recovery or storage is prohibitively expensive, so that here theoreticians have a unique role to play by developing a predictive mathematical model that would reliably describe the conditions for mobilization and the dynamics of mobilized trapped fluid volumes in different porous matrices. The proposed research aims at addressing this dual problem. It has become possible as a result of two recent developments:- an experimental discovery at Schlumberger Gould Research Centre, Cambridge that the ganglia trapped in a porous rock can be mobilized by fluctuations on the scale of the individual pores which can be generated even when the external forcing is steady - a new conceptual framework for describing the propagation of wetting fronts, developed by the project's investigators, which for the first time describes highly unusual ('anomalous') regimes of invasion of liquids into porous solids, that were discovered experimentally two decades ago.The synergy of these two developments opens a way to the first reliable predictive model describing the stability and dynamics of ganglia in porous solids. The potential for the field-transforming changes has been recognized by industry, and Schlumberger, the world's leading supplier of technology solutions for the oil and gas industry, has offered to support the project by releasing its experimental data (conservatively estimated at £715,000 to generate) and the help of its staff to interpret them (£15,000 in the staff time) as well as training of the PDRAs involved in this work. On the theoretical side, the proposed work addresses a number of fundamental research challenges in the mechanics of multiphase systems such as the translation of the pore-scale information into the properties of a macroscopic (Darcy-scale) model and the modelling of transitions in the topology of the flow domain (breakup of ganglia, their coalescence). Advances here will make a significant methodological impact on mechanics of multiphase system well beyond the study of flows in porous media. The degree of novelty and adventure in the proposed research is best illustrated by the fact that, even knowing the two developments listed above that form the basis of the project, it is still impossible to even qualitatively predict the effect of their synergy. If supported and successful, the project offers a step-change advance in our understanding of multiphase systems and, via Schlumberger, an immediate application of results.
在最近的一份政府报告《英国石油和天然气-企业和政府行动》中,强调“到2040年代,英国70%的能源需求仍有可能由石油和天然气满足”,因此,从战略上讲,“最大限度地提高国内石油和天然气的供应量”。与进口相比,这将提高英国能源需求的弹性和安全性。与此同时,根据2014年世界能源展望报告,现有的二次采油方法在油田因“枯竭”而被放弃并转向新的勘探时仍有30%至60%的石油未被回收。这既低效又不环保。为了达到未采收的石油,并降低向新油田扩张的速度,直到可再生能源发电成为经济上可行的替代方案,有必要开发高效的提高石油采收率(EOR)方法。EOR的重点是回收被困在多孔岩石中的油滴,称为“神经节”,这些油滴在注水“二次开采阶段”后仍然被卡住。EOR的目的是通过一些额外的物理机制来动员神经节。相反的问题是二氧化碳封存;这是一个旨在减缓气候变化速度的过程。在那里,绝对必要的是,被泵入多孔层的二氧化碳体积保持在那里,而不会逃逸回大气中。在每种情况下,试错法评估回收或储存的效率是非常昂贵的,因此,在这里,理论家有一个独特的作用,发挥开发一个预测的数学模型,将可靠地描述动员的条件和动态的动员截留流体体积在不同的多孔基质。这项研究旨在解决这一双重问题。由于最近的两个事态发展,这一点成为可能:- 剑桥斯伦贝谢古尔德研究中心的一项实验发现,即使在外部强迫稳定的情况下,也可以通过单个孔隙的规模波动来调动多孔岩石中的神经节-该项目的研究人员开发了一个新的概念框架,用于描述湿润锋的传播,首次描述了极不寻常的(“异常”)液体侵入多孔固体的状态,这两个发展的协同作用开辟了一条道路,第一个可靠的预测模型描述了多孔固体中神经节的稳定性和动力学。油田改造变化的潜力已得到行业的认可,全球领先的石油和天然气行业技术解决方案供应商斯伦贝谢已通过发布其实验数据来支持该项目(保守估计为715,000英镑)以及其工作人员的帮助来解释它们(工作人员时间为15,000英镑)以及参与这项工作的PDRA的培训。在理论方面,所提出的工作解决了多相系统力学中的一些基础研究挑战,例如将孔隙尺度信息转化为宏观(达西尺度)模型的属性,以及流域拓扑结构中的过渡建模(神经节的破裂,它们的合并)。这方面的进展将对多相系统力学产生重大的方法论影响,远远超出多孔介质中流动的研究。拟议研究的新奇和冒险程度最好地说明了这一事实,即即使知道构成该项目基础的上述两项发展,仍然不可能甚至定性地预测其协同作用的效果。如果得到支持并取得成功,该项目将为我们对多相系统的理解提供一个飞跃性的进步,并通过斯伦贝谢立即应用结果。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The onset of solidification: From interface formation to the Stefan regime.
凝固的开始:从界面形成到斯特凡状态。
- DOI:10.1063/5.0084044
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Belozerov AA
- 通讯作者:Belozerov AA
Darcy's law for two-dimensional flows: Singularities at corners and a new class of models
二维流动的达西定律:拐角处的奇点和一类新模型
- DOI:10.1002/aic.15840
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Shikhmurzaev Y
- 通讯作者:Shikhmurzaev Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yulii Shikhmurzaev其他文献
Yulii Shikhmurzaev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yulii Shikhmurzaev', 18)}}的其他基金
High-Performance Spinning Disc Atomisation Process
高性能旋转盘雾化工艺
- 批准号:
EP/K028553/1 - 财政年份:2014
- 资助金额:
$ 56.72万 - 项目类别:
Research Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Collaborative R&D
Cross-scale forecasting of Everglades wading bird dynamics
大沼泽地涉水鸟动态的跨尺度预测
- 批准号:
2326954 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Continuing Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349873 - 财政年份:2024
- 资助金额:
$ 56.72万 - 项目类别:
Standard Grant
Collaborative Research: RUI: The influence of ants on regional-scale soil carbon dynamics
合作研究:RUI:蚂蚁对区域尺度土壤碳动态的影响
- 批准号:
2230333 - 财政年份:2023
- 资助金额:
$ 56.72万 - 项目类别:
Standard Grant
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 56.72万 - 项目类别:
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 56.72万 - 项目类别: