Multiparameter Assay for Profiling Susceptibility (MAPS)
敏感性分析多参数测定 (MAPS)
基本信息
- 批准号:EP/P02324X/1
- 负责人:
- 金额:$ 143.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Antimicrobial resistance (AMR) is the ability of microbes to evolve resistance against an antimicrobial treatment. For example, a bacterium can develop resistance to an antibiotic medicine, rendering that medicine ineffective in treating and containing the infection. The loss of effective antibiotics will have a significant impact on our lives, not only increasing the chances of developing a serious infection but also increasing the risk associated with medical procedures. The recent O'Neill review predicts "If we fail to act, we are looking at an almost unthinkable scenario where antibiotics no longer work and we are cast back into the dark ages of medicine".While AMR in bacteria occurs naturally over time, the misuse and overuse of antibiotics is accelerating this process. For example, many infections such as tonsillitis are predominantly (80%) viral and can thus not be treated with antibiotics, yet antibiotics are still prescribed. An obvious solution is to introduce new drugs. However, this is not only very costly but it is also inevitable that resistance to any new medicine will develop. A promising and sustainable solution to the AMR problem is the introduction of diagnostic tests that not only confirm a bacterial infection but also identify the best antibiotic for treating the infection. The aim of this project is to develop a diagnostic that will ensure the right drugs are prescribed at the right time. The technology, called MAPS, is based on silicon photonics. Although developed originally for use in the communications industry, we have shown that this same technology can be used to monitor biology, including bacteria and proteins, with very high sensitivity. We will exploit this technology to create a diagnostic that will identify the type of bacterium and severity of infection, the presence of resistance mechanisms and the most promising antibiotic for treatment. Working with clinical and industrial collaborators, we will demonstrate and validate the technology for the treatment of urinary tract infections and determine a route for taking it to the market.
抗菌素耐药性(AMR)是微生物对抗菌治疗产生耐药性的能力。例如,细菌可以对抗生素药物产生耐药性,使该药物在治疗和控制感染方面无效。有效抗生素的丧失将对我们的生活产生重大影响,不仅增加发生严重感染的机会,还会增加与医疗程序相关的风险。最近的奥尼尔评论预测,“如果我们不采取行动,我们将看到一个几乎不可想象的场景,抗生素不再起作用,我们将回到医学的黑暗时代”。虽然随着时间的推移,细菌中的AMR会自然发生,但滥用和过度使用抗生素正在加速这一过程。例如,许多感染,如扁桃体炎,主要是(80%)病毒,因此不能用抗生素治疗,但抗生素仍然是处方。一个显而易见的解决办法是引进新药。然而,这不仅非常昂贵,而且不可避免地会产生对任何新药的耐药性。AMR问题的一个有前途和可持续的解决方案是引入诊断测试,不仅可以确认细菌感染,还可以确定治疗感染的最佳抗生素。该项目的目的是开发一种诊断方法,以确保在正确的时间开出正确的药物。这项名为MAPS的技术基于硅光子学。虽然最初开发用于通信行业,但我们已经证明,同样的技术可以用于监测生物,包括细菌和蛋白质,具有非常高的灵敏度。我们将利用这项技术来创造一种诊断方法,可以识别细菌的类型和感染的严重程度,耐药机制的存在以及最有希望的治疗抗生素。我们将与临床和工业合作者合作,展示和验证治疗尿路感染的技术,并确定将其推向市场的途径。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Limit of Multiplexed Near-Field Optical Trapping
- DOI:10.1021/acsphotonics.1c00354
- 发表时间:2021-07-06
- 期刊:
- 影响因子:7
- 作者:Conteduca, Donato;Brunetti, Giuseppe;Ciminelli, Caterina
- 通讯作者:Ciminelli, Caterina
Photonic, plasmonic and hybrid nanotweezers for single nanoparticle trapping and manipulation
用于单个纳米粒子捕获和操纵的光子、等离子体和混合纳米镊子
- DOI:10.1109/icton.2017.8025044
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ciminelli C
- 通讯作者:Ciminelli C
Nanophotonic and hydrogel-based diagnostic system for the monitoring of chronic wounds
基于纳米光子和水凝胶的诊断系统,用于监测慢性伤口
- DOI:10.1016/j.bios.2023.115743
- 发表时间:2023
- 期刊:
- 影响因子:12.6
- 作者:Bakshi S
- 通讯作者:Bakshi S
Dielectric Nanohole Array Metasurface For High-Resolution Near-Field Sensing and Imaging
用于高分辨率近场传感和成像的介电纳米孔阵列超表面
- DOI:10.21203/rs.3.rs-44521/v1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Conteduca D
- 通讯作者:Conteduca D
Enhancing the repeatability and sensitivity of low-cost PCB, pH-sensitive field-effect transistors.
增强低成本 PCB、pH 敏感场效应晶体管的可重复性和灵敏度。
- DOI:10.1016/j.bios.2023.115150
- 发表时间:2023
- 期刊:
- 影响因子:12.6
- 作者:Ashton R
- 通讯作者:Ashton R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Krauss其他文献
Tuneable modulating metasurface at visible and near-IR wavelengths
可见光和近红外波长下可调谐调制超表面
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Samuel F J Blair;Joshua S Male;Christopher Reardon;Thomas Krauss - 通讯作者:
Thomas Krauss
The Wall: On the psychology of the reunification of Germany
- DOI:
10.1007/bf02196776 - 发表时间:
1994-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Thomas Krauss;Angelika Faas - 通讯作者:
Angelika Faas
QUBO formulations of the longest path problem
最长路径问题的 QUBO 公式
- DOI:
10.1016/j.tcs.2021.02.021 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Joey McCollum;Thomas Krauss - 通讯作者:
Thomas Krauss
Thomas Krauss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Krauss', 18)}}的其他基金
Immuno Diagnostix (IDX) - An ultrasensitive, low cost photonic biosensor
免疫诊断 (IDX) - 超灵敏、低成本光子生物传感器
- 批准号:
EP/V047434/1 - 财政年份:2021
- 资助金额:
$ 143.63万 - 项目类别:
Research Grant
Metalens fluorometer to assess drinking water in Nepal
Metalens 荧光计评估尼泊尔的饮用水
- 批准号:
EP/T020008/1 - 财政年份:2020
- 资助金额:
$ 143.63万 - 项目类别:
Research Grant
Label-free, Real-time, Spatial-resolution (LRS) immunoassay: 2D mapping of extracellular signalling molecules
无标记、实时、空间分辨率 (LRS) 免疫分析:细胞外信号分子的 2D 绘图
- 批准号:
BB/L018160/1 - 财政年份:2014
- 资助金额:
$ 143.63万 - 项目类别:
Research Grant
Monolithic integration of optical traps and microfluidic channels
光阱和微流体通道的单片集成
- 批准号:
EP/F020589/1 - 财政年份:2008
- 资助金额:
$ 143.63万 - 项目类别:
Research Grant
相似海外基金
TempO-LINC high throughput high sensitivity single cell gene expression profiling assay Ph II
TempO-LINC 高通量高灵敏度单细胞基因表达谱分析第二阶段
- 批准号:
10699784 - 财政年份:2023
- 资助金额:
$ 143.63万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 143.63万 - 项目类别:
Milk protein profiling powered by multiplexed single molecule assay
由多重单分子测定提供支持的牛奶蛋白质分析
- 批准号:
LP210200642 - 财政年份:2022
- 资助金额:
$ 143.63万 - 项目类别:
Linkage Projects
Phenotypic Profiling of Antibiotic Susceptibility via a Multiplexed Colorimetric Fluidic Assay
通过多重比色流体分析进行抗生素敏感性表型分析
- 批准号:
472334 - 财政年份:2022
- 资助金额:
$ 143.63万 - 项目类别:
Operating Grants
TempO-LINC high throughput, high sensitivity single cell gene expression profiling assay
TempO-LINC 高通量、高灵敏度单细胞基因表达谱分析
- 批准号:
10156786 - 财政年份:2021
- 资助金额:
$ 143.63万 - 项目类别:
HT protein profiling with a Next-Gen Protein Assay (NGPA)
使用下一代蛋白质检测 (NGPA) 进行 HT 蛋白质分析
- 批准号:
10257602 - 财政年份:2021
- 资助金额:
$ 143.63万 - 项目类别:
A Single Comprehensive Assay for Gene Regulatory Profiling Optimized for Minimal Sample Input Requirements
针对最小样本输入要求进行优化的基因调控分析的单一综合分析
- 批准号:
10398158 - 财政年份:2020
- 资助金额:
$ 143.63万 - 项目类别:
A Single Comprehensive Assay for Gene Regulatory Profiling Optimized for Minimal Sample Input Requirements
针对最小样本输入要求进行优化的基因调控分析的单一综合分析
- 批准号:
10159213 - 财政年份:2020
- 资助金额:
$ 143.63万 - 项目类别:
A Single Comprehensive Assay for Gene Regulatory Profiling Optimized for Minimal Sample Input Requirements
针对最小样本输入要求进行优化的基因调控分析的单一综合分析
- 批准号:
10618150 - 财政年份:2020
- 资助金额:
$ 143.63万 - 项目类别:
High-Throughput Assay for Profiling Alternative Splicing and Splicing Regulators
用于分析选择性剪接和剪接调节器的高通量分析
- 批准号:
9797508 - 财政年份:2019
- 资助金额:
$ 143.63万 - 项目类别:














{{item.name}}会员




