Finite-dimensional reduction, Inertial Manifolds, and Homoclinic structures in dissipative PDEs
耗散偏微分方程中的有限维约简、惯性流形和同宿结构
基本信息
- 批准号:EP/P024920/1
- 负责人:
- 金额:$ 49.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a common belief that the dissipative dynamics generated by partial differential equations in bounded domains is effectively finite-dimensional. In other words, despite the fact that the initial phase space is infinite-dimensional, there is a possibility that after an "unimportant" transient behaviour is discarded, the dynamics can be described by finitely many parameters which satisfying a system of ordinary differential equations (ODEs) - the so-called inertial form (IF). This idea is widely used, in particular, in modern theories of turbulence, in order to justify various scales (inertial, dissipative, etc.), energy cascades, and Kolmogorov laws. However, the precise and clear meaning of the above mentioned finite-dimensional reduction remains a mystery, despite the fundamental significance of the problem and permanent interest to it by the experts from various fields of science. Rigorously, the finite-dimensional reduction is justified in the case where the so-called inertial manifold (IM) exists. By definition, it is a finite-dimensional smooth invariant manifold in the phase space which attracts exponentially all other trajectories. Then, the IF is generated just by restricting the system to this invariant manifold. However, the existence of an IM requires the so called spectral gap conditions (SG) which are not satisfied in many interesting examples. In particular, the existence or non-existence of the IM for the 2D Navier-Stokes system is one of the major open problems in the field. In such cases, only non-smooth (Holder continuous) IFs are constructed in general, and it was unclear for a long time whether this loss of smoothness is just a drawback of the method or it has a principal significance. The situation has changed now due to our recent counterexamples which show that, in the absence of an IM, the dynamics may demonstrate features which cannot be observed in smooth ODEs, i.e. the dynamics may only "pretend" to be finite-dimensional (due to the existence of a non-smooth IF), while the "true nature" of the dynamics is infinite-dimensional. In the project we intend to give a precise meaning to this idea and investigate the effect in detail.This will potentially lead to an essential shift in the paradigm which would requires a comprehensive study of the new infinite-dimensional phenomena arising in problems which were previously thought to be finite-dimensional; this is the ultimate aim of the proposed project. We intend to act in two directions: on one hand, we develop new methods of verifying the existence of IMs and, on the other hand, by combining the methods of the Analysis of PDEs and Functional Analysis with Dynamical Systems theory and, in particular, normal hyperbolicity theory and the theory of homolcinic bifurcations, we will describe a wide class of PDEs which may demonstrate the new type of infinite-dimensional dynamics. As a result, we intend to show that for systems of PDEs with a non-trivial (recurrent) dynamics there is an almost sharp dichotomy between the existence of IM and the irreducibility to a finite-dimensional system of ODEs in practically every reasonable sense. The obtained results will be applied to various classes of physically important dissipative PDEs, such as 1D Burger's type equations and systems, complex Ginzburg-Landau equations, and (as an ultimate goal) tthe 2D Navier-Stokes system on a torus or on a sphere.
人们普遍认为,由偏微分方程在有界域中产生的耗散动力学实际上是有限维的。换句话说,尽管初始相空间是无限维的,但在丢弃“不重要”的瞬态行为之后,动力学可以用有限多个参数来描述,这些参数满足一个常微分方程(ode)系统——即所谓的惯性形式(IF)。这个想法被广泛使用,特别是在现代湍流理论中,以证明各种尺度(惯性,耗散等),能量级联和柯尔莫哥洛夫定律。然而,上述有限维约简的精确和清晰的含义仍然是一个谜,尽管这个问题具有根本意义,并且各个科学领域的专家都对它感兴趣。严格地说,在所谓的惯性流形(IM)存在的情况下,有限维缩减是合理的。根据定义,它是相空间中的有限维光滑不变流形,它以指数方式吸引所有其他轨迹。然后,IF是通过将系统限制为这个不变流形来生成的。然而,谱隙的存在需要所谓的谱隙条件(SG),而在许多有趣的例子中,这一条件并不满足。特别是二维Navier-Stokes系统的IM是否存在是该领域的主要开放性问题之一。在这种情况下,通常只构造非光滑的(Holder连续的)if,并且很长一段时间都不清楚这种平滑性的损失是该方法的缺点还是具有主要意义。由于我们最近的反例表明,在没有IM的情况下,动力学可能表现出在光滑的ode中无法观察到的特征,即动力学可能只是“假装”是有限维的(由于非光滑IF的存在),而动力学的“真实性质”是无限维的。在这个项目中,我们打算给这个想法一个精确的含义,并详细研究其效果。这可能会导致范式的本质转变,这将需要对以前被认为是有限维的问题中出现的新的无限维现象进行全面的研究;这是拟建项目的最终目的。我们打算在两个方向上采取行动:一方面,我们开发验证IMs存在的新方法;另一方面,通过将偏微分方程分析和泛函分析的方法与动力系统理论相结合,特别是正规双曲理论和齐次分岔理论,我们将描述一类可能展示新型无限维动力学的偏微分方程。因此,我们打算证明,对于具有非平凡(循环)动力学的偏微分方程系统,在几乎所有合理的意义上,在IM的存在性和对有限维偏微分方程系统的不可约性之间存在着几乎尖锐的二分法。所获得的结果将应用于各种物理上重要的耗散微分方程,如1D Burger型方程和系统,复杂的金兹堡-朗道方程,以及(作为最终目标)环面或球面上的2D Navier-Stokes系统。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deterministic and random attractors for a wave equation with sign changing damping
- DOI:10.4213/im9250e
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Qingquan Chang;Dandan Li;Chunyou Sun;S. Zelik
- 通讯作者:Qingquan Chang;Dandan Li;Chunyou Sun;S. Zelik
A proof of validity for multiphase Whitham modulation theory
多相Whitham调制理论有效性的证明
- DOI:10.48550/arxiv.2003.10732
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bridges T
- 通讯作者:Bridges T
Validity of the hyperbolic Whitham modulation equations in Sobolev spaces
Sobolev 空间中双曲 Whitham 调制方程的有效性
- DOI:10.1016/j.jde.2020.11.019
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Bridges T
- 通讯作者:Bridges T
Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations
3D 阻尼 Euler-Bardina 方程吸引子维数的尖锐上限和下限
- DOI:10.1016/j.physd.2022.133156
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ilyin A
- 通讯作者:Ilyin A
Cesaro summation by spheres of lattice sums and Madelung constants
通过晶格和和马德隆常数的球体进行切萨罗求和
- DOI:10.3934/cpaa.2021153
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Galbally B
- 通讯作者:Galbally B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Zelik其他文献
Infinite energy solutions for weakly damped quintic wave equations in R^3
R^3 中弱阻尼五次波动方程的无限能量解
- DOI:
10.1090/tran/8317 - 发表时间:
2021 - 期刊:
- 影响因子:1.3
- 作者:
Xinyu Mei;Anton Savostianov;Chunyou Sun;Sergey Zelik - 通讯作者:
Sergey Zelik
Infinite Energy Solutions for Dissipative Euler Equations in $${\mathbb{R}^2}$$
- DOI:
10.1007/s00021-015-0213-x - 发表时间:
2015-06-29 - 期刊:
- 影响因子:1.300
- 作者:
Vladimir Chepyzhov;Sergey Zelik - 通讯作者:
Sergey Zelik
Reaction-diffusion systems with supercritical nonlinearities revisited
重新审视具有超临界非线性的反应扩散系统
- DOI:
10.1007/s00208-021-02222-6 - 发表时间:
2020-06 - 期刊:
- 影响因子:1.4
- 作者:
Anna Kostianko;Chunyou Sun;Sergey Zelik - 通讯作者:
Sergey Zelik
Reaction-diffusion systems with supercritical nonlinearities revisited
- DOI:
doi.org/10.1007/s00208-021-02222-6 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Anna Kostianko;Chunyou Sun;Sergey Zelik - 通讯作者:
Sergey Zelik
Degenerate Hyperbolic Conservation Laws with Dissipation: Reduction to and Validity of a Class of Burgers-Type Equations
- DOI:
10.1007/s00205-014-0772-7 - 发表时间:
2014-07-25 - 期刊:
- 影响因子:2.400
- 作者:
Thomas Bridges;Jonathan Pennant;Sergey Zelik - 通讯作者:
Sergey Zelik
Sergey Zelik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
The role of NQR in ROS-dependent virulence regulation in Vibrio cholerae
NQR 在霍乱弧菌 ROS 依赖性毒力调节中的作用
- 批准号:
10721326 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Potassium channels and uteroplacental vessels function in pregnant long QT type 1 women
怀孕长 QT 1 型女性的钾通道和子宫胎盘血管功能
- 批准号:
10665263 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
- 批准号:
10819068 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
- 批准号:
10874883 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Effects of Nicotine Concentration Levels in E-cigarettes on Biomarkers of Exposure to Toxicants and Tobacco Use Behaviors
电子烟中尼古丁浓度水平对有毒物质暴露和烟草使用行为生物标志物的影响
- 批准号:
10678555 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Interpretable Deep Learning Models for Analysis of Longitudinal 3D Mammography Screenings
用于分析纵向 3D 乳房 X 光检查的可解释深度学习模型
- 批准号:
10667745 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Defining cell intrinsic and extrinsic regulators of ferroptosis in pancreatic cancer
定义胰腺癌铁死亡的细胞内在和外在调节因子
- 批准号:
10679812 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 49.01万 - 项目类别: