Data assimilation and forecasting for urban crime models
城市犯罪模型的数据同化和预测
基本信息
- 批准号:EP/P030882/1
- 负责人:
- 金额:$ 12.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, a great deal of research activities associated with big data analytics of crime events and crime patterns has greatly expanded and been increasingly received attentions from practitioners and government agencies; for example, "Big data, crime and security" programme run by Parliamentary Office of Science and Technology (POST) and many crime-related projects run by the Partnership for Conflict, Crime and Security Research (PaCCS). With an availability of a large amount of crime data, there is an opportunity to transform the 'Big data' into intelligence that will aid the law enforcement in switching from the incident-oriented policing toward proactive and strategic policing, which will lead to the most effective use of resources.With the aim of understanding dynamics of crime patterns, recent mathematical research has developed several crime models such as agent-based model (ABM) for the urban burglary that incorporate well-known interactions between individual criminals and environment at the neighbourhood level. These models provide an important tool to establish the links between hypothesised criminal behaviours embedded in the models and real-world observed crime data. What is missing, however, is a novel data assimilation technique of crime data analytics that can statistically merge the model predictions with the real-world crime data in order to make better projections of future crime patterns as well as quantified the hypothesised criminal behaviour within the crime models.The primary aim of the proposed research is to develop a practical computational tool in the framework of the sequential (Bayesian) data assimilation to statistically merge complex crime models with crime data. The research holds a promise of improving a predictive distribution of the crime rate and identifying the future of crime pattern through joint state-parameter estimation. A long-term policing strategy to reduce overall crime rate would greatly benefit from such data analytic tool. A theoretical understanding of the computational method in term of stability analysis and convergence rate will be studied to gain an insight into the applicability as well as limits of the method. The proposed work will also address the challenges in making a prediction of crime patterns in a rapidly changing situation, reflected through a drastic change of model parameter values. This problem is difficult to overcome in the previous research where non-parametric estimation or maximum likelihood framework was employed since these methods require optimisation under a large volume of data altogether. The sequential data assimilation, however, fit naturally to this problem when appropriately designed. The computational tool will be applied to the real-world crime data, which is accessible via the UCL-based secure data lab. With a collaboration with Prof. Shane Johnson, a criminologist at UCL, we will determine the relevance of the results to the practical use.
近年来,与犯罪事件和犯罪模式的大数据分析有关的大量研究活动大大扩大,并日益受到从业人员和政府机构的重视;例如,议会科学和技术办公室(POST)经营的“大数据、犯罪和安全”方案以及冲突、犯罪和安全研究伙伴关系(冲突、犯罪和安全研究伙伴关系)经营的许多与犯罪有关的项目。随着大量犯罪数据的可用,有机会将‘大数据’转化为情报,帮助执法部门从以事件为导向的警务转变为主动和战略性的警务,这将导致资源的最有效利用。为了了解犯罪模式的动态,最近的数学研究开发了几个犯罪模型,如基于主体的城市入室盗窃模型(ABM),该模型包含了众所周知的罪犯个体与邻里之间的相互作用。这些模型提供了一个重要工具,可用来确定模型中所载的假想犯罪行为与实际观察到的犯罪数据之间的联系。然而,缺乏一种新的犯罪数据分析的数据同化技术,该技术可以在统计上将模型预测与真实世界的犯罪数据合并,以便更好地预测未来的犯罪模式,并量化犯罪模型中的假设犯罪行为。本研究的主要目的是在序贯(贝叶斯)数据同化框架下开发一个实用的计算工具,在统计上将复杂的犯罪模型与犯罪数据合并。这项研究有望改善犯罪率的预测分布,并通过联合状态参数估计确定犯罪模式的未来。减少总体犯罪率的长期警务战略将极大地受益于这种数据分析工具。从稳定性分析和收敛速度的角度对该计算方法进行理论上的理解,以深入了解该方法的适用性和局限性。拟议的工作还将解决在迅速变化的情况下预测犯罪模式方面的挑战,模型参数值的急剧变化反映了这一挑战。在以往采用非参数估计或最大似然框架的研究中,这一问题很难克服,因为这些方法需要在大数据量下进行优化。然而,如果设计得当,序列数据同化很自然地适合于这个问题。该计算工具将应用于真实世界的犯罪数据,这些数据可以通过基于伦敦大学学院的安全数据实验室访问。与伦敦大学学院犯罪学家肖恩·约翰逊教授合作,我们将确定结果与实际应用的相关性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential data assimilation for 1D self-exciting processes with application to urban crime data
- DOI:10.1016/j.csda.2018.06.014
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:N. Santitissadeekorn;M. Short;D. Lloyd
- 通讯作者:N. Santitissadeekorn;M. Short;D. Lloyd
Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime
- DOI:10.1016/j.csda.2019.106850
- 发表时间:2020-04-01
- 期刊:
- 影响因子:1.8
- 作者:Santitissadeekorn, Naratip;Lloyd, David J. B.;Delahaies, Sylvain
- 通讯作者:Delahaies, Sylvain
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naratip Santitissadeekorn其他文献
Ensemble-based method for the inverse Frobenius–Perron operator problem: Data-driven global analysis from spatiotemporal “Movie” data
- DOI:
10.1016/j.physd.2020.132603 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Naratip Santitissadeekorn;Erik M. Bollt - 通讯作者:
Erik M. Bollt
Naratip Santitissadeekorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naratip Santitissadeekorn', 18)}}的其他基金
Ensemble-based filtering for uncovering an influence network from Hawkes processes driven by count data
基于集成的过滤,用于揭示由计数数据驱动的霍克斯过程的影响网络
- 批准号:
EP/W02084X/1 - 财政年份:2022
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
相似国自然基金
双偏振雷达资料在评估优化云参数化方案及改进定量降水预报中的应用
- 批准号:2020A1515010515
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Assessment of Data Assimilation Techniques for Space Weather Forecasting
空间天气预报数据同化技术评估
- 批准号:
561870-2021 - 财政年份:2021
- 资助金额:
$ 12.89万 - 项目类别:
University Undergraduate Student Research Awards
Enhancing forecasting flood inundation mapping through data assimilation
通过数据同化加强洪水预测
- 批准号:
2438362 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Studentship
Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning
通过机器学习的非高斯数据同化改进天气预报
- 批准号:
2033405 - 财政年份:2020
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Multi-Model data assimilation techniques for flood forecasting
洪水预报多模型资料同化技术
- 批准号:
2270121 - 财政年份:2019
- 资助金额:
$ 12.89万 - 项目类别:
Studentship
Solar wind data assimilation - maximising the accuracy of space-weather forecasting
太阳风数据同化 - 最大限度地提高空间天气预报的准确性
- 批准号:
NE/S010033/1 - 财政年份:2019
- 资助金额:
$ 12.89万 - 项目类别:
Research Grant
Tsunami Data Assimilation With Sparse Observations: Improvement Towards Tsunami Warning System
稀疏观测的海啸数据同化:海啸预警系统的改进
- 批准号:
19J20293 - 财政年份:2019
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CyberSEES: Type 1: Cyber-Enabled Ensemble Data Assimilation for Drought Monitoring, Forecasting and Recovery
CyberSEES:类型 1:用于干旱监测、预报和恢复的网络集成数据同化
- 批准号:
1830955 - 财政年份:2018
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant
Development of near future forecasting method for slope disasters using data assimilation technique
利用数据同化技术开发边坡灾害近期预报方法
- 批准号:
16K01328 - 财政年份:2016
- 资助金额:
$ 12.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification, analysis and implementation of an automatic conditional data assimilation framework for hydrological forecasting in hydropower reservoir management
水电水库管理中水文预报自动条件资料同化框架的识别、分析和实现
- 批准号:
505753-2016 - 财政年份:2016
- 资助金额:
$ 12.89万 - 项目类别:
Engage Grants Program
CyberSEES: Type 1: Cyber-Enabled Ensemble Data Assimilation for Drought Monitoring, Forecasting and Recovery
CyberSEES:类型 1:用于干旱监测、预报和恢复的网络集成数据同化
- 批准号:
1539605 - 财政年份:2015
- 资助金额:
$ 12.89万 - 项目类别:
Standard Grant