Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning
通过机器学习的非高斯数据同化改进天气预报
基本信息
- 批准号:2033405
- 负责人:
- 金额:$ 58.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project is to advance techniques for using a mathematical discipline to optimally combine theory with observations to improve the accuracy of weather forecasts. The team will use different forms of machine learning mechanism to detect changes in the behavior of moisture fields in the atmosphere such that the new techniques are able to change parts of the weather prediction scheme to better capture these fields in different locations and at different times. To achieve the research goal, a large amount of observations and model results is required to train computers to detect moisture changes. The research will investigate how much data are needed to reliably detect changes through the machine learning techniques. As part of this research project, the research team will develop a website for the research community to view atmospheric moisture changes in the past 24 hours. This research will also test how well a new component of the weather prediction scheme works when the machine learning techniques have detected moisture changes from its normal behavior. The project will also involve training a new scientist to learn the latest research method. The research team will investigate the ability of machine learning techniques to detect changes away from Gaussian behavior for the moisture fields and to be capable to switch the cost function in variational data assimilation between Gaussian and non-Gaussian. The scheme is important to ensure that the model-observation errors are being model consistently. The error changes are commonly assumed to be toward lognormal; recent work has indicated that the behavior of moisture fields has another probability density function—the reverse lognormal. This distribution has a right skewness and enables analysis to increase the moisture state if the background is too dry. Using the proper type of error distribution schemes will aid not only cloud prediction but also cloud retention in forecast models after the data assimilation scheme has finished. This team will also investigate a new ensemble smoother, as well as non-Gaussian versions of the Maximum Likelihood Ensemble Filter as a more consistent ensemble filter for hybrid data assimilation schemes, especially for the lognormal and reverse lognormal behavior. In addition, the skewness of the moisture field at different locations and heights will be displayed at the team’s website for the general public and forecasters to view how the moisture distribution is changing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在推进利用数学学科将联合收割机理论与观测最佳结合的技术,以提高天气预报的准确性。该团队将使用不同形式的机器学习机制来检测大气中水分场行为的变化,以便新技术能够改变天气预测方案的部分内容,从而更好地在不同位置和不同时间捕获这些场。为了实现研究目标,需要大量的观测和模型结果来训练计算机检测水分变化。该研究将调查需要多少数据才能通过机器学习技术可靠地检测变化。作为该研究项目的一部分,研究小组将为研究界开发一个网站,以查看过去24小时内的大气湿度变化。这项研究还将测试当机器学习技术检测到湿度从正常行为变化时,天气预测方案的新组件的工作效果如何。该项目还将涉及培训一名新科学家,以学习最新的研究方法。 研究小组将研究机器学习技术检测水分场高斯行为变化的能力,并能够在高斯和非高斯之间切换变分数据同化中的成本函数。该计划是重要的,以确保模型的观测误差是一致的模型。 误差的变化通常被认为是对对数正态的,最近的工作表明,湿度场的行为有另一个概率密度函数-反向对数正态。该分布具有右偏度,并且如果背景太干燥,则能够进行分析以增加水分状态。使用适当类型的误差分布方案不仅有助于云的预报,而且有助于资料同化方案完成后预报模式中的云保持。该团队还将研究一种新的集合平滑器,以及最大似然包络滤波器的非高斯版本,作为混合数据同化方案的更一致的集合滤波器,特别是对数正态和反向对数正态行为。 此外,不同位置和高度的湿度场的偏度将在团队的网站上显示,供公众和预报员查看湿度分布如何变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lognormal and Mixed Gaussian–Lognormal Kalman Filters
对数正态和混合高斯 - 对数正态卡尔曼滤波器
- DOI:10.1175/mwr-d-22-0072.1
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Fletcher, Steven J.;Zupanski, Milija;Goodliff, Michael R.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.;Wu, Ting-Chi;Hossen, Md. Jakir;Van Loon, Senne
- 通讯作者:Van Loon, Senne
Non‐Gaussian Detection Using Machine Learning With Data Assimilation Applications
使用机器学习和数据同化应用进行非高斯检测
- DOI:10.1029/2021ea001908
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Goodliff, Michael R.;Fletcher, Steven J.;Kliewer, Anton J.;Jones, Andrew S.;Forsythe, John M.
- 通讯作者:Forsythe, John M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Fletcher其他文献
Annalisa Camporeale, Francesca Marino*, XXX* di Heymans, Patrick
安娜丽莎·坎波雷亚莱 (Annalisa Camporeale)、弗朗西斯卡·马里诺 (Francesca Marino)*、帕特里克·海曼斯 (XXX* di Heymans)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Annalisa Camporeale;F. Marino;Anna;Paolo Carai;Sara Fornero;Steven Fletcher;Brent D. G. Page;Patrick Gunning;M. Forni;Roberto Chiarle;Mara;Morello;O. Jensen;R. Levi;Stephane Heymans;Valeria Poli - 通讯作者:
Valeria Poli
Computational control of gene expression in individual yeast using reactive microscopy
- DOI:
10.1016/j.bpj.2022.11.1562 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zachary Fox;Steven Fletcher;Jakob Ruess;Gregory Batt - 通讯作者:
Gregory Batt
A novel BRD4 inhibitor CA2 suppresses MM cell proliferation in an orthotopic myeloma mouse model.
一种新型 BRD4 抑制剂 CA2 可抑制原位骨髓瘤小鼠模型中的 MM 细胞增殖。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara. - 通讯作者:
and Eishi Ashihara.
The polypharmacy combination of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor gilteritinib (GIL) is more active in acute myeloid leukemia cells than novel polypharmacologic BCL-2/FLT3 VEN–GIL hybrid single-molecule inhibitors
BCL-2 抑制剂维奈托克(VEN)和 FLT3 抑制剂吉列替尼(GIL)的多药联合治疗在急性髓系白血病细胞中比新型多药理学 BCL-2/FLT3 VEN–GIL 杂合单分子抑制剂更具活性。
- DOI:
10.1016/j.ejmech.2024.117190 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:5.900
- 作者:
Christopher C. Goodis;Christian Eberly;Alexandria M. Chan;MinJung Kim;Brandon D. Lowe;Curt I. Civin;Steven Fletcher - 通讯作者:
Steven Fletcher
造血器悪性腫瘍に対するWnt/β-cateninシグナルを標的とした創薬研究
针对血液恶性肿瘤 Wnt/β-catenin 信号的药物发现研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara.;芦原英司 - 通讯作者:
芦原英司
Steven Fletcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Fletcher', 18)}}的其他基金
Maker Education and Community Building as Tools to Recruit, Develop, and Retain STEM Teachers
创客教育和社区建设作为招募、培养和留住 STEM 教师的工具
- 批准号:
1950312 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
The Eighth International Symposium on Data Assimilation (ISDA); Fort Collins, Colorado; June 8-12, 2020
第八届资料同化国际研讨会(ISDA);
- 批准号:
2011670 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Establishing Links between Atmospheric Dynamics and Non-Gaussian Distributions and Quantifying Their Effects on Numerical Weather Prediction
建立大气动力学和非高斯分布之间的联系并量化它们对数值天气预报的影响
- 批准号:
1738206 - 财政年份:2017
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Noyce Phase II Monitoring & Evaluation at St. Edward's University
诺伊斯二期监测
- 批准号:
1439817 - 财政年份:2014
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Analyzing the Impacts of Non-Gaussian Errors in Gaussian Data Assimilation Systems
分析高斯数据同化系统中非高斯误差的影响
- 批准号:
1038790 - 财政年份:2012
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
The St. Edward's University Robert Noyce Teacher Scholarship Program
圣爱德华大学罗伯特·诺伊斯教师奖学金计划
- 批准号:
0833123 - 财政年份:2008
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320147 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
- 批准号:
2238375 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Applying Year of Polar Prediction-Southern Hemisphere (YOPP-SH) Targeted Observing Periods to Advance Winter Numerical Weather Forecasting for the U.S. Antarctic Program
应用极地预测年 - 南半球 (YOPP-SH) 目标观测周期推进美国南极计划的冬季数值天气预报
- 批准号:
2205398 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Next Generation, Physics-Inspired AI for Space Weather Forecasting
用于空间天气预报的下一代物理启发人工智能
- 批准号:
NE/W009129/1 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Fellowship
SBIR Phase I: Reducing Numerical Weather Forecasting Computational Expense Using Machine Learning
SBIR 第一阶段:使用机器学习减少数值天气预报计算费用
- 批准号:
2051891 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
HBCU-RISE Center for Improving Understanding and Forecasting of Orographic Effects on Extreme Weather (EWC)
HBCU-RISE 提高地形对极端天气影响的理解和预报中心 (EWC)
- 批准号:
2022961 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Coupled Model Inter-comparison Project Phase-5 Weather Research and Forecasting (CMIP5-WRF) Simulations Quantifying Anthropogenic Forcing and Saharan Long-range Dust Transport
耦合模型相互比较项目第五阶段天气研究和预报 (CMIP5-WRF) 模拟量化人为强迫和撒哈拉远距离沙尘输送
- 批准号:
2129594 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
Community Coordinated Modeling Center: Facilitating Space Weather Research, Advancing Forecasting, and Providing Hands-On Opportunities for Education
社区协调建模中心:促进空间天气研究、推进预报并提供实践教育机会
- 批准号:
2140031 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
Continuing Grant
Assessment of Data Assimilation Techniques for Space Weather Forecasting
空间天气预报数据同化技术评估
- 批准号:
561870-2021 - 财政年份:2021
- 资助金额:
$ 58.25万 - 项目类别:
University Undergraduate Student Research Awards