Transition metal controlled nitrogen chemistry in zeolite and protein environments using a unified quantum embedding model

使用统一的量子嵌入模型控制沸石和蛋白质环境中的过渡金属氮化学

基本信息

  • 批准号:
    EP/R001847/1
  • 负责人:
  • 金额:
    $ 130.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Nitrogen compounds play a crucial role in the earth's ecosystems, being continually converted from one form to another as they pass from the atmosphere to living organisms on land and in the sea. Nitric oxide gas (NO), for example, is a key intermediate in the global nitrogen cycle, and plays important roles in many processes in almost all forms of life, often acting as a signalling molecule. However, emissions of NO and the toxic gas nitrogen dioxide (collectively known as NOx) from heavy industry and motor vehicles alter the composition of nitrogen compounds in the atmosphere and are highly damaging both directly and indirectly to the human respiratory system. The removal of NOx from exhaust emissions is a pressing environmental concern and an important target for industrial catalysis research, an area of extreme importance to the UK economy.We propose to study the chemistry of nitrogen oxides in biological and industrial environments where a full understanding of how the gases are controlled is crucial but still lacking. In both cases the chemistry is controlled by transition metals: cytochrome c' proteins have evolved an extraordinary degree of control of NO through binding to an iron complex which discriminates against other diatomic gases, while in zeolite catalysts (microporous aluminosilicate structures) NOx gases can be converted into safer by-products at copper centres through the addition of ammonia in a process known as selective catalytic reduction (SCR). The precise mechanisms, however, are not currently proven.We will investigate the chemistry of nitrogen dioxide and nitrogen oxide in both systems by computational simulations performed on high performance clusters. The resulting data will be used to model spectroscopic signatures, i.e. how electromagnetic radiation (such as light or X-rays) interacts with matter. These will be compared with the results of infrared, Raman, UV-visible and X-ray absorption experiments on the two systems to better understand the processes involved in the chemical reactions, which will inform the future design of improved zeolite catalysts and bioengineered proteins.We will use quantum mechanical/molecular mechanical (QM/MM) modelling to identify the reaction mechanisms and calculate spectroscopic signatures of the two systems. In this approach the zeolite and protein active sites will be treated using a highly accurate, but computationally expensive, quantum mechanical level of theory, embedded in an environment described by an efficient classical calculation. New QM/MM methods will be implemented that can enable larger QM regions to be calculated and more accurate spectroscopic signatures including anharmonic vibrational effects. Importantly, our approach for combining computational modelling with experimental results will be generally applicable to any chemical processes in complex systems, including other industrial catalysts and biomolecules.
氮化合物在地球的生态系统中起着至关重要的作用,当它们从大气中传播到陆地和海洋上的生物生物时,它们不断地从一种形式转化为另一种形式。例如,一氧化氮气体(NO)是全球氮循环中的关键中间体,并且在许多过程中在几乎所有形式的生命中都起着重要作用,通常充当信号分子。然而,重工业和汽车的NO和有毒气体二氧化氮(统称为NOX)的排放改变了大气中氮化合物的组成,并且对人类呼吸系统的直接和间接构成。从排气排放中清除NOX是一个紧迫的环境问题,也是工业催化研究的重要目标,这对英国经济非常重要。我们建议研究在生物学和工业环境中氮氧化物的化学反应,在这些环境中,对气体如何控制的完全了解是至关重要的,但仍然缺乏。在这两种情况下,化学均由过渡金属控制:细胞色素C蛋白通过与铁复合物结合而发展到非凡的NO控制程度催化还原(SCR)。但是,目前尚未证明确切的机制。我们将通过对高性能簇进行的计算模拟来研究两种系统中二氧化氮和氮的化学。所得数据将用于模拟光谱特征,即电磁辐射(例如光或X射线)与物质相互作用。 These will be compared with the results of infrared, Raman, UV-visible and X-ray absorption experiments on the two systems to better understand the processes involved in the chemical reactions, which will inform the future design of improved zeolite catalysts and bioengineered proteins.We will use quantum mechanical/molecular mechanical (QM/MM) modelling to identify the reaction mechanisms and calculate spectroscopic signatures of the two系统。在这种方法中,沸石和蛋白质活性位点将使用高度准确但昂贵的量子机械水平的理论水平进行处理,该理论嵌入了有效的经典计算所描述的环境中。将实施新的QM/mm方法,该方法可以计算出更大的QM区域,并更准确的光谱特征(包括非谐波振动效应)。重要的是,我们将计算建模与实验结果相结合的方法通常适用于复杂系统中的任何化学过程,包括其他工业催化剂和生物分子。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides.
体相和表面对金属氧化物电离势的贡献。
Influence of Solvent on Selective Catalytic Reduction of Nitrogen Oxides with Ammonia over Cu-CHA Zeolite.
  • DOI:
    10.1021/jacs.2c09823
  • 发表时间:
    2023-01-11
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Nasir, Jamal Abdul;Guan, Jingcheng;Keal, Thomas W.;Desmoutier, Alec W.;Lu, You;Beale, Andrew M.;Catlow, C. Richard A.;Sokol, Alexey A.
  • 通讯作者:
    Sokol, Alexey A.
Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems.
  • DOI:
    10.1098/rsta.2022.0234
  • 发表时间:
    2023-07-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Guan, Jingcheng;Lu, You;Sen, Kakali;Nasir, Jamal Abdul;Desmoutier, Alec W. W.;Hou, Qing;Zhang, Xingfan;Logsdail, Andrew J. J.;Dutta, Gargi;Beale, Andrew M. M.;Strange, Richard W. W.;Yong, Chin;Sherwood, Paul;Senn, Hans M. M.;Catlow, C. Richard A.;Keal, Thomas W. W.;Sokol, Alexey A. A.
  • 通讯作者:
    Sokol, Alexey A. A.
Overcoming the compensation of acceptors in GaN:Mg by defect complex formation
通过形成缺陷复合物克服 GaN:Mg 中受主的补偿
  • DOI:
    10.1063/5.0148858
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Xie Z
  • 通讯作者:
    Xie Z
Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment.
  • DOI:
    10.1021/acs.jctc.8b01036
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    You Lu;M. Farrow;Pierre Fayon;A. Logsdail;A. Sokol;C. R. A. Catlow;P. Sherwood;T. Keal
  • 通讯作者:
    You Lu;M. Farrow;Pierre Fayon;A. Logsdail;A. Sokol;C. R. A. Catlow;P. Sherwood;T. Keal
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Keal其他文献

Thomas Keal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Keal', 18)}}的其他基金

BEORHN: Bacterial Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟进行硝化反应中活性羟胺的细菌酶氧化
  • 批准号:
    BB/V016660/1
  • 财政年份:
    2022
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Research Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
  • 批准号:
    EP/W014378/1
  • 财政年份:
    2022
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Research Grant
Dynamics of Electron and Proton Transfer Chemistry in Copper and Hybrid Copper-Haem Enzymes
铜和杂化铜血红素酶中电子和质子转移化学的动力学
  • 批准号:
    BB/M022390/1
  • 财政年份:
    2015
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Research Grant

相似国自然基金

基于分子自由基受控合成的非金属元素共振激发激光诱导击穿光谱检测方法研究
  • 批准号:
    11874167
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
受控凝固条件下高Nb-TiAl合金的显微组织演化及力学相关性
  • 批准号:
    51571162
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
三维石墨烯-多元金属纳米晶介孔有序电化学传感界面的受控组装及应用
  • 批准号:
    21575009
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
基于生物质低温受控燃烧的碱金属协同环境固定化机理研究
  • 批准号:
    50906025
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
金属构件受控激光喷丸强化的残余应力表征与控制
  • 批准号:
    50675090
  • 批准年份:
    2006
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics
受控相变热力学液态金属纳米冶金
  • 批准号:
    DE220100816
  • 财政年份:
    2022
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Discovery Early Career Researcher Award
Controlled synthesis and understanding the growth mechanism of 1D transition metal chalcogenide aggregates
一维过渡金属硫族化物聚集体的控制合成和生长机制
  • 批准号:
    21K14498
  • 财政年份:
    2021
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ligand Controlled Redox Catalysis with Late Transition Metal Complexes
后过渡金属配合物配体控制的氧化还原催化
  • 批准号:
    2102433
  • 财政年份:
    2021
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Standard Grant
Development of structure-controlled early transition metal binary oxide based acid-base catalysts and the activity controlling factor
结构控制的早期过渡金属二元氧化物酸碱催化剂的研制及其活性控制因素
  • 批准号:
    19K05150
  • 财政年份:
    2019
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlled Synthesis of Transition Metal Oxide Mesocrystals on Graphene Oxide and the Application in Electrocatalysis
氧化石墨烯上过渡金属氧化物介晶的可控合成及其在电催化中的应用
  • 批准号:
    337373595
  • 财政年份:
    2017
  • 资助金额:
    $ 130.24万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了