New Methods and Data for Energy Research (NEMDER)
能源研究新方法和数据 (NEMDER)
基本信息
- 批准号:EP/R002320/1
- 负责人:
- 金额:$ 7.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy system modelling has been driven, at best, annual data series at national or regional level. The roll-out of smart meters along with the increasing availability of new forms of user data from crowdsourced platforms such as social media, mobile phones and apps offers an immense opportunity to improve our understanding of consumer's energy behaviours and preferences and UK's changing energy mix in near real-time at a low geographical resolution. Combining this data with that collected from other non-energy domains and the use of techniques like machine learning and hierarchical analytic methods means that future energy system research can recognise tripping points, emerging patterns, interdependencies and end-user behaviours in near real time. Beyond creating a world leading, state-of-the-art research programme, generating such insights is important both for industry and policy. On the former, understanding consumer demand patterns and development of generation mix in near real time would enable a more effective operation of the network in a future energy system supplied by intermittent renewable resources. Yet, the trajectory of this low carbon transition is highly uncertain as characterised by a large number of future energy system scenarios. Moreover, combining and linking data from multiple sources can support the development of new services, firms and business models. These new approaches can also contribute to develop a more nuanced policy approach to respond to consumer behaviours whilst utilising differences across the energy system in terms of diversity of actors, socio-economic, geographic and network characteristics, demand patterns and interdependencies of energy sector with other sectors such as transport. Otherwise the risks would be widening of existing socio-economic differences and tripping points leading to major bottlenecks on the networks and exacerbating social inequalities.
能源系统建模充其量是由国家或地区层面的年度数据系列驱动的。智能电表的推出以及来自社交媒体、手机和应用程序等众包平台的新型用户数据的可用性不断增加,为我们以低地理分辨率近乎实时地了解消费者的能源行为和偏好以及英国不断变化的能源结构提供了巨大的机会。将这些数据与从其他非能源领域收集的数据相结合,并使用机器学习和分层分析方法等技术,意味着未来的能源系统研究可以近乎实时地识别触发点、新兴模式、相互依赖性和最终用户行为。除了创建世界领先、最先进的研究计划之外,产生此类见解对于行业和政策都很重要。就前者而言,近乎实时地了解消费者需求模式和发电组合的发展将使网络在由间歇性可再生资源提供的未来能源系统中更有效地运行。然而,由于未来能源系统的大量情景,这种低碳转型的轨迹具有高度不确定性。此外,组合和链接多个来源的数据可以支持新服务、公司和商业模式的开发。这些新方法还有助于制定更细致的政策方法,以应对消费者行为,同时利用整个能源系统在参与者多样性、社会经济、地理和网络特征、需求模式以及能源部门与运输等其他部门的相互依赖性方面的差异。否则,风险将是现有社会经济差异和触发点扩大,导致网络出现重大瓶颈并加剧社会不平等。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Mean Field Game Approach for Distributed Control of Thermostatic Loads Acting in Simultaneous Energy-Frequency Response Markets
- DOI:10.1109/tsg.2019.2895247
- 发表时间:2019-01
- 期刊:
- 影响因子:9.6
- 作者:Antonio De Paola;V. Trovato;D. Angeli;G. Strbac
- 通讯作者:Antonio De Paola;V. Trovato;D. Angeli;G. Strbac
Energy and reserve scheduling under ambiguity on renewable probability distribution
- DOI:10.1016/j.epsr.2018.01.024
- 发表时间:2018-07
- 期刊:
- 影响因子:3.9
- 作者:Alexandre Moreira;Bruno Fanzeres;G. Strbac
- 通讯作者:Alexandre Moreira;Bruno Fanzeres;G. Strbac
Assessing the implications of socioeconomic diversity for low carbon technology uptake in electrical distribution networks
- DOI:10.1016/j.apenergy.2017.07.089
- 发表时间:2018-01
- 期刊:
- 影响因子:11.2
- 作者:R. McKenna;P. Djapic;J. Weinand;W. Fichtner;G. Strbac
- 通讯作者:R. McKenna;P. Djapic;J. Weinand;W. Fichtner;G. Strbac
A stochastic dual dynamic programming approach for optimal operation of DER aggregators
- DOI:10.1109/ptc.2017.7981213
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Panagiotis Fatouros;I. Konstantelos;D. Papadaskalopoulos;G. Strbac
- 通讯作者:Panagiotis Fatouros;I. Konstantelos;D. Papadaskalopoulos;G. Strbac
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazmiye Ozkan其他文献
Nazmiye Ozkan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazmiye Ozkan', 18)}}的其他基金
Global Hydrogen Production Technologies (HyPT) Center
全球制氢技术 (HyPT) 中心
- 批准号:
EP/Y026098/1 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Urban development, energy infrastructure and sustainable mobility (UDESMO)
城市发展、能源基础设施和可持续交通 (UDESMO)
- 批准号:
ES/W01064X/1 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Protecting Minority Ethnic Communities Online (PRIME)
在线保护少数民族社区 (PRIME)
- 批准号:
EP/W032082/1 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Mobility as a service: MAnaging Cybersecurity Risks across Consumers, Organisations and Sectors (MACRO)
移动即服务:管理跨消费者、组织和部门的网络安全风险(宏观)
- 批准号:
EP/V039164/1 - 财政年份:2021
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Theory of Change Observatory on Disaster Resilience
抗灾力变化观察站理论
- 批准号:
EP/V006592/1 - 财政年份:2020
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Scenarios for the development of smart grids in the UK
英国智能电网发展情景
- 批准号:
NE/J005975/1 - 财政年份:2011
- 资助金额:
$ 7.65万 - 项目类别:
Third Party Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Developing and exploring methods to understand human-nature interactions in urban areas using new forms of big data
利用新形式的大数据开发和探索理解城市地区人与自然相互作用的方法
- 批准号:
ES/W012979/1 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Research Grant
Biodiversity and the Evolving Earth: New Data, New Methods, New Insights
生物多样性和不断演变的地球:新数据、新方法、新见解
- 批准号:
2889701 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Studentship
New methods for enhanced brain activity mapping through multi-modal data-fusion and deep learning
通过多模态数据融合和深度学习增强大脑活动映射的新方法
- 批准号:
2830309 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Studentship
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 7.65万 - 项目类别:
Some new models and methods for complex longitudinal and survival data
复杂纵向和生存数据的一些新模型和方法
- 批准号:
RGPIN-2022-03574 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
RGPIN-2020-07235 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual
From complex data to complex structures: new methods for structural biology
从复杂数据到复杂结构:结构生物学新方法
- 批准号:
10646399 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
From complex data to complex structures: new methods for structural biology
从复杂数据到复杂结构:结构生物学新方法
- 批准号:
10796695 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
New Challenges, Models and Methods for Functional Data Analysis
功能数据分析的新挑战、模型和方法
- 批准号:
RGPIN-2018-06008 - 财政年份:2022
- 资助金额:
$ 7.65万 - 项目类别:
Discovery Grants Program - Individual