Structural Health Monitoring of Systems of Systems: Populations, Networks and Communities
系统系统的结构健康监测:群体、网络和社区
基本信息
- 批准号:EP/R003645/1
- 负责人:
- 金额:$ 112.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the main contributors towards the cost of high-value engineering assets is the cost of maintenance. Taking an aircraft out of service for inspection means loss of revenue. However, if damage occurs and leads to catastrophic failure, safety and casualties are major issues. In terms of an offshore wind farm, the cost of an unscheduled visit to a remote ocean site to replace a 75m blade is exceedingly high. If one adopts an approach to maintenance where the structure of interest is monitored constantly by permanent sensors, and data processing algorithms alert the owner or user when damage is developing, one can optimise the maintenance programme for cost without sacrificing safety. If damage is detected early, repair rather than replacement can be viable.The complexity of modern structures and their challenging operating environments make it difficult to develop algorithms that can detect and identify early damage. The relevant discipline - structural health monitoring (SHM) - suffers from problems that have prevented uptake of the technology by industry. Although structural complexity makes analysis difficult, one variant of SHM - the data-based approach - shows great promise. In this case one uses machine learning techniques to diagnose damage from measured data. Data-based SHM faces a number of challenges; the first is that most data-based approaches to SHM require measured data from the structure in all possible states of damage. For a structure like an 5 MW wind turbine - it is simply not conceivable that one should damage a single one for data collection purposes, let alone many. Fortunately, if one is only interested in whether damage is present or not, this is possible using only data from the healthy condition. One builds a picture of the healthy state of the structure and then monitors for deviations. This raises a second issue with data-based SHM; if one is monitoring the structure for changes, one does not wish to be deceived by a benign change in its environmental/operational conditions - so-called 'confounding influences'.The original Fellowship aimed to solve these problems via a population-based approach to SHM modelled on the discipline of 'syndromic surveillance' (SS), which is used to detect disease outbreaks in human populations. The core of the proposed research was an intelligent database holding data across populations of structures, and an inference engine that could use damage data from an individual, to allow diagnostics on others. The original work has progressed very well; the required database was created and algorithms for inference across populations have been developed and demonstrated. Algorithms for removing confounding influences have also been created which are arguably now the state of the art. The Fellowship so far has also allowed insights into how population-based SHM can go far beyond technologies based on SS, leading to this new proposal. Very new concepts in SHM will be explored. The first idea is to extend the 'database' to an 'ontology'; ontologies encode, share and re-use domain knowledge. In a way, moving to an ontology adds a 'language centre' to the existing storage and processing; one might even think of the result as a computational brain concentrating on a specific engineering field - in this case SHM. New population-based methods are proposed. For populations of near-identical structures, the idea of the 'form' of a structure is presented. The form is created to represent all individuals in a population, if damage data are available for an individual turbine in a wind farm, they can be transferred into the form and thus allow inference across the farm. Furthermore, a general theory of populations of disparate structures will be constructed using ideas from mathematics and computation: geometry, graph theory, complex networks and machine learning. Again, the theory will allow damage data from individuals to generate insights across the population.
高价值工程资产成本的主要贡献者之一是维护成本。让一架飞机停止服役进行检查意味着损失收入。然而,如果损坏发生并导致灾难性故障,安全和人员伤亡是主要问题。就海上风电场而言,不定期地前往偏远的海洋地点更换75米长的叶片的成本非常高。如果采用一种维护方法,即通过永久性传感器不断监测感兴趣的结构,并且数据处理算法在损坏发生时提醒所有者或用户,则可以在不牺牲安全性的情况下优化维护计划以降低成本。如果及早发现损坏,维修而不是更换是可行的。现代结构的复杂性及其具有挑战性的操作环境使得开发能够检测和识别早期损伤的算法变得困难。相关学科——结构健康监测(SHM)——存在阻碍工业采用该技术的问题。尽管结构的复杂性使分析变得困难,但SHM的一种变体——基于数据的方法——显示出很大的希望。在这种情况下,人们使用机器学习技术从测量数据中诊断损坏。基于数据的SHM面临许多挑战;首先,大多数基于数据的SHM方法需要结构在所有可能的损伤状态下的测量数据。对于像5兆瓦风力涡轮机这样的结构来说,为了收集数据而损坏一个是不可想象的,更不用说很多了。幸运的是,如果一个人只对是否存在损害感兴趣,这是可能的,只使用健康状况的数据。一个是构建结构健康状态的图像,然后监测偏差。这就提出了基于数据的SHM的第二个问题;如果一个人正在监测结构的变化,他不希望被环境/操作条件的良性变化所欺骗,即所谓的“混杂影响”。最初的奖学金旨在通过以“综合征监测”(SS)学科为模型的基于人群的SHM方法来解决这些问题,SS用于检测人群中的疾病暴发。提出的研究的核心是一个智能数据库,包含不同结构群体的数据,以及一个推理引擎,可以使用来自个体的损伤数据,从而对其他人进行诊断。原来的工作进展得很好;创建了所需的数据库,开发并演示了跨种群推断的算法。消除混淆影响的算法也被创造出来,这可以说是目前最先进的。到目前为止,该项目还让人们深入了解了基于人口的SHM如何能够远远超越基于SS的技术,从而产生了这个新提议。将探索SHM中非常新的概念。第一个想法是将“数据库”扩展为“本体”;本体编码、共享和重用领域知识。在某种程度上,转向本体为现有的存储和处理增加了一个“语言中心”;人们甚至可以把这个结果想象成一个专注于特定工程领域的计算大脑——在这个例子中是SHM。提出了新的基于人口的方法。对于几乎相同结构的种群,提出了结构“形式”的概念。该表格是用来表示群体中的所有个体的,如果风力发电场中单个涡轮机的损坏数据可用,则可以将其转移到表格中,从而允许对整个农场进行推断。此外,将使用数学和计算中的思想构建不同结构总体的一般理论:几何,图论,复杂网络和机器学习。再一次,该理论将允许个体的损害数据来产生对整个群体的见解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Validation of the Population-Form to Represent Nominally-Identical Systems
表示名义相同系统的总体形式的实验验证
- DOI:10.12783/shm2019/32373
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:BULL L
- 通讯作者:BULL L
Fault diagnosis of wind turbine structures using decision tree learning algorithms with big data
- DOI:10.1201/9781351174664-382
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:I. Abdallah;V. Dertimanis;H. Mylonas;K. Tatsis;E. Chatzi;N. Dervili;K. Worden;Eoghan Maguire
- 通讯作者:I. Abdallah;V. Dertimanis;H. Mylonas;K. Tatsis;E. Chatzi;N. Dervili;K. Worden;Eoghan Maguire
Active Learning Approaches to Structural Health Monitoring
结构健康监测的主动学习方法
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:L. Bull;G. Manson;K. Worden;N. Dervilis
- 通讯作者:N. Dervilis
Bayesian Modelling of Multivalued Power Curves from an Operational Wind Farm
- DOI:10.1016/j.ymssp.2021.108530
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:L. Bull;P. Gardner;T. Rogers;N. Dervilis;E. Cross;E. Papatheou;A. E. Maguire;C. Campos;K. Worden
- 通讯作者:L. Bull;P. Gardner;T. Rogers;N. Dervilis;E. Cross;E. Papatheou;A. E. Maguire;C. Campos;K. Worden
Outlier ensembles: an alternative robust method for inclusive outlier analysis.
离群值集合:用于包容性离群值分析的另一种稳健方法。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Bull (L.A.)
- 通讯作者:Bull (L.A.)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Worden其他文献
Phase/Frequency Analysis of Diffuse Lamb-Wave Field for Fatigue-Crack Detection in an Aluminium Multi-Riveted Strap Joint Aircraft Panel
用于铝制多铆接带式飞机面板疲劳裂纹检测的漫射兰姆波场相位/频率分析
- DOI:
10.1016/j.measurement.2023.113884 - 发表时间:
2023 - 期刊:
- 影响因子:5.6
- 作者:
Frank H. G. Stolze;Keith Worden;G. Manson;W. Staszewski - 通讯作者:
W. Staszewski
Canonical-correlation-based fast feature selection for structural health monitoring
- DOI:
10.1016/j.ymssp.2024.111895 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Sikai Zhang;Tingna Wang;Keith Worden;Limin Sun;Elizabeth J. Cross - 通讯作者:
Elizabeth J. Cross
Transfer learning in bridge monitoring: Laboratory study on domain adaptation for population-based SHM of multispan continuous girder bridges
- DOI:
10.1016/j.ymssp.2024.112151 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Valentina Giglioni;Jack Poole;Robin Mills;Ilaria Venanzi;Filippo Ubertini;Keith Worden - 通讯作者:
Keith Worden
Quantifying the value of information transfer in population-based SHM
量化基于人群的健康管理中信息传输的价值
- DOI:
10.48550/arxiv.2311.03083 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Hughes;J. Poole;N. Dervilis;P. Gardner;Keith Worden - 通讯作者:
Keith Worden
On the influence of attributes for assessing similarity and sharing knowledge in heterogeneous populations of structures
关于属性在评估异质结构群体中的相似性和共享知识方面的影响
- DOI:
10.1016/j.ymssp.2025.112554 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:8.900
- 作者:
Giulia Delo;Aidan J. Hughes;Cecilia Surace;Keith Worden - 通讯作者:
Keith Worden
Keith Worden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Worden', 18)}}的其他基金
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 112.26万 - 项目类别:
Fellowship
Revolutionising Operational Safety and Economy for High-value Infrastructure using Population-based SHM (ROSEHIPS)
使用基于人口的 SHM (ROSEHIPS) 彻底改变高价值基础设施的运营安全性和经济性
- 批准号:
EP/W005816/1 - 财政年份:2022
- 资助金额:
$ 112.26万 - 项目类别:
Research Grant
Structural Dynamics Laboratory for Verification and Validation (LVV) Across Scales and Environments
用于跨尺度和环境验证和确认 (LVV) 的结构动力学实验室
- 批准号:
EP/N010884/1 - 财政年份:2016
- 资助金额:
$ 112.26万 - 项目类别:
Research Grant
S^3 Disease Surveillance for Structures and Systems
S^3 结构和系统疾病监测
- 批准号:
EP/J016942/1 - 财政年份:2013
- 资助金额:
$ 112.26万 - 项目类别:
Fellowship
Uncertainty Propagation in Structures, Systems and Processes
结构、系统和过程中的不确定性传播
- 批准号:
EP/D078601/1 - 财政年份:2006
- 资助金额:
$ 112.26万 - 项目类别:
Research Grant
Smart Sensing for Structural Health Monitoring (S3HM)
用于结构健康监测的智能传感 (S3HM)
- 批准号:
EP/E010849/1 - 财政年份:2006
- 资助金额:
$ 112.26万 - 项目类别:
Research Grant
相似国自然基金
重大传染病防治关键技术研究-重大传染病防治关键技术研究-基于One Health的SFTS防治技术体系构建与应用
- 批准号:2025C02186
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人兽共患病One Health防控决策路径研究
- 批准号:
- 批准年份:2024
- 资助金额:5.0 万元
- 项目类别:省市级项目
基于 One Health 策略的 mcr 阳性多重耐药
ST34 型沙门菌的流行传播机制及溯源研究
- 批准号:Y24H190002
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于One Health理念的人兽共患病防控决策机制及实施路径研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
One Health 导向下人畜共患病公共危机四维防控体系研究
- 批准号:2019JJ50277
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于时间序列Shapelets的u-Health心电图可解释早期分类研究
- 批准号:61702468
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于One Health理念建立动物职业暴露人群流感监测体系的研究
- 批准号:81473034
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
基于广义Health-Jarrow-Morton模型的固定收益证券定价方法研究
- 批准号:70771075
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: Machine Learning-Based Smart Data Compression Solutions for Structural Health Monitoring Sensors
STTR 第一阶段:用于结构健康监测传感器的基于机器学习的智能数据压缩解决方案
- 批准号:
2321884 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Standard Grant
Flexible polymer-based sensors for structural health monitoring in renewable energy-generating devices
用于可再生能源发电设备结构健康监测的柔性聚合物传感器
- 批准号:
2893927 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Studentship
Artificial Intelligence for structural health monitoring using graphene sensor systems (InteGraph)
使用石墨烯传感器系统进行结构健康监测的人工智能 (InteGraph)
- 批准号:
10066187 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Collaborative R&D
Structural Health Monitoring for Maintaining Aging Civil Infrastructure
维护老化民用基础设施的结构健康监测
- 批准号:
2886618 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Studentship
Development and validation of an automated structural health monitoring system for post-earthquake building safety evaluations
用于震后建筑安全评估的自动结构健康监测系统的开发和验证
- 批准号:
22KF0087 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
I-Corps: Artificial intelligence-based software package for end-to-end structural health monitoring of infrastructure systems
I-Corps:基于人工智能的软件包,用于基础设施系统的端到端结构健康监测
- 批准号:
2306180 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Standard Grant
USES of novel Ultrasonic and Seismic Embedded Sensors for the non-destructive evaluation and structural health monitoring of critical infrastructure
使用新型超声波和地震嵌入式传感器对关键基础设施进行无损评估和结构健康监测
- 批准号:
EP/X027392/1 - 财政年份:2023
- 资助金额:
$ 112.26万 - 项目类别:
Research Grant
Automated analysis approaches for Structural Health Monitoring on aerospace primary structure with ultrasonic and electromagnetic sensor arrays
利用超声波和电磁传感器阵列对航空航天主结构进行结构健康监测的自动分析方法
- 批准号:
2737813 - 财政年份:2022
- 资助金额:
$ 112.26万 - 项目类别:
Studentship
Structural Health Monitoring of Reinforced Concrete Structures with Advanced Concrete Mixtures
采用先进混凝土混合物的钢筋混凝土结构的结构健康监测
- 批准号:
RGPIN-2018-03790 - 财政年份:2022
- 资助金额:
$ 112.26万 - 项目类别:
Discovery Grants Program - Individual
Real-time Artificial Intelligence (AI) Prediction of Seepage Failure and Evacuation Assistance by Structural Health Monitoring of River Levees
通过河堤结构健康监测实时人工智能(AI)预测渗漏故障并协助疏散
- 批准号:
22K04313 - 财政年份:2022
- 资助金额:
$ 112.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)