Time-resolved dissociative electron attachment

时间分辨解离电子附着

基本信息

  • 批准号:
    EP/R023085/1
  • 负责人:
  • 金额:
    $ 47.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Chemical changes can be driven by the reaction of molecules with atoms, molecules, heat, light or electrons. All of these types of reactions have been studied extensively over the past century. In particular, their study under isolated (gas-phase) conditions enables the atomic-level details of the chemical dynamics to be uncovered. More recently, with the advent of short pulsed lasers in the 1980's, all of these isolated reactions have been studied at the timescales of the atomic motion in complex molecules, with the notable exception of electron driven reactions. One of the most important electron driven chemical reactions is that of dissociative electron attachment in which an electron breaks apart a molecule leaving a neutral and negatively charged fragment. The current proposal outlines two experimental methods that will enable the direct measurement of dissociative electron attachment for the first time. The outcomes will provide a new platform to study a wide range of such reactions and a few atmospherically important reactions will be studied to demonstrate the applicability of the methods. The outcomes will provide valuable insight into the fundamental nature of these electron driven reactions. This fundamental insight is crucial because the computational modelling of dissociative dynamics is still beyond the current state-of-the-art except for the smallest molecular systems. From a broader perspective, understanding electron driven chemistry will ultimately enable control and rational design of such processes, which is technologically exploitable. For example, plasma-reactions are employed in molecular coating, etching, and semi-conductor technologies.
化学变化可以由分子与原子、分子、热、光或电子的反应驱动。在过去的世纪里,所有这些类型的反应都得到了广泛的研究。特别是,他们在隔离(气相)条件下的研究使化学动力学的原子级细节得以揭示。最近,随着20世纪80年代短脉冲激光的出现,所有这些孤立的反应都在复杂分子中原子运动的时间尺度上进行了研究,电子驱动反应是一个明显的例外。最重要的电子驱动的化学反应之一是解离电子附着,其中电子使分子分裂,留下中性和带负电荷的片段。目前的建议概述了两种实验方法,这将使直接测量解离电子附着的第一次。结果将提供一个新的平台,研究广泛的此类反应和一些大气重要的反应将进行研究,以证明该方法的适用性。这些结果将为深入了解这些电子驱动反应的基本性质提供有价值的见解。这个基本的见解是至关重要的,因为解离动力学的计算建模仍然超出了目前的最先进的最小的分子系统除外。从更广泛的角度来看,理解电子驱动化学将最终实现对这些过程的控制和合理设计,这在技术上是可以利用的。例如,等离子体反应用于分子涂层、蚀刻和半导体技术。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low energy electron impact resonances of anthracene probed by 2D photoelectron imaging of its radical anion.
  • DOI:
    10.1063/5.0007470
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Golda Mensa-Bonsu;A. Lietard;D. Tozer;J. Verlet
  • 通讯作者:
    Golda Mensa-Bonsu;A. Lietard;D. Tozer;J. Verlet
Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study
  • DOI:
    10.1021/acs.jpca.1c05586
  • 发表时间:
    2021-08-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lietard, Aude;Verlet, Jan R. R.;Jordan, Kenneth D.
  • 通讯作者:
    Jordan, Kenneth D.
Effect of Microhydration on the Temporary Anion States of Pyrene.
  • DOI:
    10.1021/acs.jpclett.2c00523
  • 发表时间:
    2022-04-28
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Lietard, Aude;Verlet, Jan R. R.
  • 通讯作者:
    Verlet, Jan R. R.
Correction: Enhancement of electron accepting ability of para-benzoquinone by a single water molecule.
修正:单个水分子增强对苯醌的电子接受能力。
  • DOI:
    10.1039/d0cp90056g
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mensa-Bonsu G
  • 通讯作者:
    Mensa-Bonsu G
Enhancement of electron accepting ability of para-benzoquinone by a single water molecule.
单个水分子增强对苯醌的电子接受能力。
  • DOI:
    10.1039/c9cp04559g
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mensa-Bonsu G
  • 通讯作者:
    Mensa-Bonsu G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Verlet其他文献

Jan Verlet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Verlet', 18)}}的其他基金

Multi-dimensional electron spectroscopy with photons
光子多维电子能谱
  • 批准号:
    EP/V007971/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Research Grant
Time-resolved Intramolecular Photoelectron Diffraction (TIPD) of Ions in the Gas-phase
气相离子的时间分辨分子内光电子衍射 (TIPD)
  • 批准号:
    EP/V047787/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Research Grant
Electrons at the water/air interface
水/空气界面上的电子
  • 批准号:
    EP/F063326/1
  • 财政年份:
    2008
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Research Grant
Ultrafast gas phase dynamics of isolated and solvated anions: Complex anions in chemistry and biology
分离和溶剂化阴离子的超快气相动力学:化学和生物学中的复杂阴离子
  • 批准号:
    EP/D073472/1
  • 财政年份:
    2006
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Fellowship

相似海外基金

NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Standard Grant
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
  • 批准号:
    530760073
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Major Research Instrumentation
Pump field probe magnetic field effect fluorescence microscopy for time-resolved radical pair detection in biological systems
用于生物系统中时间分辨自由基对检测的泵场探针磁场效应荧光显微镜
  • 批准号:
    23K26612
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Tiny Drops of Acid: Microwave Spectroscopy and Isomer-resolved IR Spectroscopy of Hydrohalic Acid-Water Clusters
职业:微小的酸滴:氢卤酸-水簇的微波光谱和异构体分辨红外光谱
  • 批准号:
    2340303
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Continuing Grant
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
  • 批准号:
    LE240100073
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
NSF Convergence Accelerator Track K: Spatially Resolved Solutions for Field to Regional Irrigation Water Management to Promote Equitable Sharing of Limited Water Resources
NSF 融合加速器轨道 K:田间到区域灌溉用水管理的空间解决方案,以促进有限水资源的公平共享
  • 批准号:
    2344487
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Standard Grant
GLIOMATCH: The malignant Glioma immuno-oncology matchmaker: towards data-driven precision medicine using spatially resolved radio-multiomics
GLIOMATCH:恶性胶质瘤免疫肿瘤学媒人:利用空间分辨的放射多组学实现数据驱动的精准医学
  • 批准号:
    10113516
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    EU-Funded
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Research Grant
Solar energy materials in action: real-time molecular movies of pyroelectric switching by time-resolved X-ray diffraction
太阳能材料的实际应用:通过时间分辨 X 射线衍射拍摄热释电开关的实时分子电影
  • 批准号:
    2901373
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Studentship
Unraveling exciton dynamics for valleytronics applications with Time-resolved ARPES
利用时间分辨 ARPES 揭示谷电子学应用的激子动力学
  • 批准号:
    24K00561
  • 财政年份:
    2024
  • 资助金额:
    $ 47.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了