Electrons at the water/air interface
水/空气界面上的电子
基本信息
- 批准号:EP/F063326/1
- 负责人:
- 金额:$ 22.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Within its complex structure, liquid water is known to support cavities that can accommodate an electron. Such an electron - known as the hydrated electron - has been studied for many decades because of its wide ranging importance in chemistry, physics and biology. The current proposal presents a feasibility study to observe excess electrons in water that are not confined within a cavity, but instead reside on the surface of water. The proposal is in part motivated by recent predictions and observations that certain ions preferentially bind to the surface of water at the water/air interface. Binding of an electron to the surface of large gas-phase water clusters have also recently been observed by the principal investigator and coworkers. This observation has prompted a substantial debate concerning the issue of electron binding in such systems. In the current proposal, we suggest a means of bringing these two observations together. Specifically, we seek to investigate electrons bound to the surface of an infinite cluster, i.e. at the water/air interface. The existence of surface-bound electrons may have important multidisciplinary implications. To atmospheric chemistry, for example, it presents a potentially highly reactive species on the surface of sea-water aerosol particles. In biology, the surface bound electron similarly presents a source of low energy electrons, which are known to cause DNA damage. Finally, from a chemical physics perspective, this presents the most elementary anion and its interaction with water (or any solvent) has been topical for many decades.As mentioned, certain ions have a tendency to bind at the surface of water. One of these is the iodide anion, which shows a dramatic increase in concentration at the water/air interface. We will use this anion to inject an electron onto the water surface using its so-called charge-transfer-to-solvent excitation. By driving this transition with an ultrashort pulse, which has a duration that is less than the time required for water molecules to rearrange, we effectively inject the electron onto the surface of the water. The water molecules at the surface interact strongly with the negative charge and will then reorganise to accommodate the electron. Thus, the electron will initially be bound to the surface of the water, where we will be able to detect it. Our detection relies on a very weak response of the surface to strong incident radiation. It is based on the fact that, at an interface, the inversion symmetry is necessarily broken, which leads to the generation of photons emitted at twice the incident radiation frequency and is termed second harmonic generation (SHG). Because the process only occurs at the interface, it is highly surface specific. The process can be greatly enhanced if either the driving field or the SHG radiation is in resonance with a transition of a species at the surface and we will use the first electronic transition of the surface electron. As there is nothing else on the surface that is in resonance at this energy, SHG will be enhance solely due to the presence of an electron. In this case, SHG is thus also species selective. Experimentally then, we have created the electron at a well-defined time and can now detect the electron using a second ultrashort probe pulse and monitor the emitted SHG. Once the surface electron is identified, we will characterise it by measuring its electronic absorption spectrum, by tuning the probe wavelength. Furthermore, we can also monitor the relaxation dynamics as the electron becomes more solvated with time, by introducing a delay between the creation and probe pulses. In this manner we can glean great insight into the ultrafast relaxation dynamics of these exotic electrons. As this is a feasibility study, the completion of the project will instigate a number of research tracks, aimed at understanding the solvation dynamics in more detail and investigating its reactivity.
在其复杂的结构中,液态水被认为支持可以容纳电子的空腔。这种电子-被称为水合电子-已经被研究了几十年,因为它在化学,物理学和生物学中具有广泛的重要性。目前的提案提出了一项可行性研究,以观察水中多余的电子,这些电子不局限于空腔内,而是驻留在水面上。该提议的部分动机是最近的预测和观察,即某些离子优先结合到水/空气界面处的水表面。主要研究者和同事最近也观察到电子与大的气相水簇表面的结合。这一观察结果引发了关于此类系统中电子结合问题的实质性辩论。在目前的提案中,我们提出了一种将这两种意见结合起来的方法。具体来说,我们试图调查电子绑定到一个无限的集群的表面,即在水/空气界面。表面束缚电子的存在可能具有重要的多学科意义。例如,对于大气化学来说,它在海水气溶胶颗粒的表面上呈现出潜在的高活性物质。在生物学中,表面束缚电子类似地提供了低能电子的来源,已知低能电子会导致DNA损伤。最后,从化学物理学的角度来看,这是最基本的阴离子,它与水(或任何溶剂)的相互作用已经讨论了几十年。如上所述,某些离子倾向于结合在水的表面。其中之一是碘阴离子,其在水/空气界面处显示出浓度的急剧增加。我们将使用这种阴离子,利用其所谓的电荷转移到溶剂激发,将电子注入到水表面。通过用超短脉冲驱动这种转变,其持续时间小于水分子重新排列所需的时间,我们有效地将电子注入到水的表面。表面的水分子与负电荷强烈相互作用,然后重组以容纳电子。因此,电子最初将被束缚在水的表面,我们将能够检测到它。我们的检测依赖于表面对强入射辐射的非常微弱的响应。它是基于这样的事实,即在界面处,反转对称性必然被打破,这导致以入射辐射频率的两倍发射的光子的产生,并且被称为二次谐波产生(SHG)。由于该过程仅发生在界面处,因此具有高度的表面特异性。如果驱动场或SHG辐射与表面上的物种跃迁发生共振,我们将使用表面电子的第一电子跃迁,则该过程可以大大增强。由于在该能量下表面上没有其他任何东西发生共振,因此SHG将仅由于电子的存在而增强。在这种情况下,SHG也是物种选择性的。在实验上,我们已经在一个明确的时间产生了电子,现在可以使用第二个超短探测脉冲检测电子并监测发射的SHG。一旦表面电子被识别,我们将通过测量其电子吸收光谱,通过调整探测波长来识别它。此外,我们还可以通过在创建脉冲和探测脉冲之间引入延迟来监测随着时间的推移电子变得更加溶剂化的弛豫动力学。通过这种方式,我们可以深入了解这些奇异电子的超快弛豫动力学。由于这是一项可行性研究,该项目的完成将引发一系列研究,旨在更详细地了解溶剂化动力学并研究其反应性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Verlet其他文献
Jan Verlet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Verlet', 18)}}的其他基金
Multi-dimensional electron spectroscopy with photons
光子多维电子能谱
- 批准号:
EP/V007971/1 - 财政年份:2021
- 资助金额:
$ 22.69万 - 项目类别:
Research Grant
Time-resolved Intramolecular Photoelectron Diffraction (TIPD) of Ions in the Gas-phase
气相离子的时间分辨分子内光电子衍射 (TIPD)
- 批准号:
EP/V047787/1 - 财政年份:2021
- 资助金额:
$ 22.69万 - 项目类别:
Research Grant
Time-resolved dissociative electron attachment
时间分辨解离电子附着
- 批准号:
EP/R023085/1 - 财政年份:2018
- 资助金额:
$ 22.69万 - 项目类别:
Research Grant
Ultrafast gas phase dynamics of isolated and solvated anions: Complex anions in chemistry and biology
分离和溶剂化阴离子的超快气相动力学:化学和生物学中的复杂阴离子
- 批准号:
EP/D073472/1 - 财政年份:2006
- 资助金额:
$ 22.69万 - 项目类别:
Fellowship
相似国自然基金
一次扫描多对比度及free-water DTI技术在功能区脑肿瘤中的研究
- 批准号:JCZRLH202500011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
光响应水凝胶微球在“On water”反应界面调节机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Na1+xMxTi2-x(PO4)3/MXene复合微卷构筑及其在Water-in-Salt复合电解液中储钠机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不同拓扑结构的水溶性共轭聚合物分子刷的合成及生物应用研究
- 批准号:51173080
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
水溶性含铱配合物的刚柔嵌段共轭聚合物的合成及其生物传感应用
- 批准号:21104033
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 22.69万 - 项目类别:
EU-Funded
REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
- 批准号:
2348995 - 财政年份:2024
- 资助金额:
$ 22.69万 - 项目类别:
Standard Grant
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 22.69万 - 项目类别:
Modern Alchemy: Fuel and Fertilisers from Air and Water
现代炼金术:从空气和水中获取燃料和肥料
- 批准号:
10104096 - 财政年份:2024
- 资助金额:
$ 22.69万 - 项目类别:
Collaborative R&D
Further development of a unique dual-purpose real-time monitor of Tritium (Beta radiation) in Air & Tritium in Water at environmental levels.
进一步开发空气中氚(β辐射)的独特双用途实时监测仪
- 批准号:
10074646 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Collaborative R&D
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
The Renin-Angiotensin System in Air Pollution-Mediated Exacerbation of Obesity.
空气污染介导的肥胖加剧中的肾素-血管紧张素系统。
- 批准号:
10654124 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Effects of per- and polyfluoroalkyl substances on placental features and size at birth
全氟烷基和多氟烷基物质对出生时胎盘特征和大小的影响
- 批准号:
10645524 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
- 批准号:
10722232 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Innovative Chair to Prevent Pressure Injuries in Persons Living with Alzheimer's Disease and Related Dementias
预防阿尔茨海默病和相关痴呆症患者压力损伤的创新椅子
- 批准号:
10760048 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别: