Emergent Nanomaterials (Critical Mass Proposal)
新兴纳米材料(临界质量提案)
基本信息
- 批准号:EP/R023522/1
- 负责人:
- 金额:$ 199.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent work we have identified a very powerful and extensive phenomenon, the constrained production of nanoparticles that opens up a new field impinging on chemistry, materials science and physics. The dispersion, stability, versatility and coherence with the substrate impart quite significant properties to the emergent nanoparticles opening up a major new topic. The process is driven by the lattice decomposition of a metal oxide under reduction by various means. Conventional thinking considers this as a simple phase separation; however, by careful control of the defect chemistry and reduction conditions, a very different process can be achieved. These nanoparticles emerge from the substrate in a constrained manner reminiscent of fungi emerging from the earth. The emergent nanoparticles are generally dispersed evenly with a very tight distribution often separated by less than one particle diameter. Here we will explore the composition and reaction space conditions necessary to optimise functionality, structure and applocability. We will also seek to better understand this phenomenology relating to correlated diffusion, driving energetics and mechanism of emergence. Further work is necessary to understand the critical dependence of composition in a very extensive domain of composition space depending upon charge and size of the A-site cations, oxygen stoichiometry and transition metal redox chemistry. Of particular importance is to understand the nature of the interaction between the nanoparticle and the substrate addressing the evolution of the nanoparticles from the surface and how the particles become anchored to the substrate. Exolved metals can react to form compounds whilst maintaining the integrity of the nanostructural array and this offers much potential for further elaboration of the concept. We will investigate the important catalytic, electrocatalytic and magnetic physics properties arising at constrained emergent particles, driven by dimensional restriction. Emergent nanomaterials provide very significant surface-particle interactions and promise new dimensions in catalysis. The electrochemical reactions in devices such as batteries and fuel cells are restricted to the domain very close to the electrolyte electrode interface. Emergent materials can be applied in exactly this zone.
在最近的工作中,我们发现了一个非常强大和广泛的现象,即纳米粒子的限制生产,开辟了一个新的领域,冲击化学,材料科学和物理学。纳米粒子的分散性、稳定性、多功能性和与基质的一致性赋予了新兴纳米粒子相当重要的性质,从而开辟了一个重大的新课题。该过程由金属氧化物在各种手段还原下的晶格分解驱动。传统的想法认为这是一个简单的相分离;然而,通过仔细控制缺陷化学和还原条件,可以实现一个非常不同的过程。这些纳米颗粒以一种受约束的方式从基质中出现,让人想起从地球上出现的真菌。出现的纳米颗粒通常均匀分散,具有非常紧密的分布,通常被小于一个粒径分开。 在这里,我们将探索优化功能性、结构和应用性所需的组成和反应空间条件。我们还将寻求更好地理解这种现象学与相关扩散,驱动能量学和涌现机制。进一步的工作是必要的,以了解在一个非常广泛的域的组合物空间取决于电荷和大小的A-位点阳离子,氧的化学计量和过渡金属氧化还原化学的组合物的关键依赖。特别重要的是要了解纳米颗粒和基底之间的相互作用的性质,解决纳米颗粒从表面的演变以及颗粒如何锚定到基底上。外溶金属可以反应形成化合物,同时保持纳米结构阵列的完整性,这为进一步阐述这一概念提供了很大的潜力。 我们将研究由尺寸限制驱动的约束涌现粒子所产生的重要的催化,电催化和磁物理性质。新兴的纳米材料提供了非常重要的表面-颗粒相互作用,并有望在催化领域开辟新的领域。电池和燃料电池等装置中的电化学反应被限制在非常接近电解质电极界面的区域。紧急材料可以应用在这个区域。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-orbit driven superconducting proximity effects in Pt/Nb thin films.
- DOI:10.1038/s41467-023-40757-1
- 发表时间:2023-08-21
- 期刊:
- 影响因子:16.6
- 作者:Flokstra, Machiel;Stewart, Rhea;Yim, Chi-Ming;Trainer, Christopher;Wahl, Peter;Miller, David;Satchell, Nathan;Burnell, Gavin;Luetkens, Hubertus;Prokscha, Thomas;Suter, Andreas;Morenzoni, Elvezio;Bobkova, Irina V.;Bobkov, Alexander M.;Lee, Stephen
- 通讯作者:Lee, Stephen
Author Correction: Lattice strain-enhanced exsolution of nanoparticles in thin films.
作者更正:薄膜中纳米颗粒的晶格应变增强解溶。
- DOI:10.1038/s41467-019-10019-0
- 发表时间:2019
- 期刊:
- 影响因子:16.6
- 作者:Han H
- 通讯作者:Han H
Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films.
- DOI:10.1038/s41467-022-34289-3
- 发表时间:2022-11-05
- 期刊:
- 影响因子:16.6
- 作者:Han, Hyeon;Xing, Yaolong;Park, Bumsu;Bazhanov, Dmitry, I;Jin, Yeongrok;Irvine, John T. S.;Lee, Jaekwang;Oh, Sang Ho
- 通讯作者:Oh, Sang Ho
Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface.
- DOI:10.1038/s41467-023-37212-6
- 发表时间:2023-03-29
- 期刊:
- 影响因子:16.6
- 作者:Cali, Eleonora;Thomas, Melonie P.;Vasudevan, Rama;Wu, Ji;Gavalda-Diaz, Oriol;Marquardt, Katharina;Saiz, Eduardo;Neagu, Dragos;Unocic, Raymond R.;Parker, Stephen C.;Guiton, Beth S.;Payne, David J.
- 通讯作者:Payne, David J.
Meissner screening as a probe for inverse superconductor-ferromagnet proximity effects
迈斯纳筛选作为反超导-铁磁体邻近效应的探针
- DOI:10.1103/physrevb.104.l060506
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Flokstra M
- 通讯作者:Flokstra M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Irvine其他文献
Enhanced CO2 electrolysis at redox manipulated interfaces
氧化还原操作界面处增强 CO2 电解
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:16.6
- 作者:
Wenyuan Wang;Lizhen Gan;John Lemmon;Fanglin Chen;John Irvine;Kui Xie - 通讯作者:
Kui Xie
Structural Anomalies of 1223 Hg(Tl)–Ba–Ca–Cu–O Superconductors in the Temperature Range 100–300 K
- DOI:
10.1023/a:1022610017728 - 发表时间:
1998-08-01 - 期刊:
- 影响因子:1.700
- 作者:
Svetlana Titova;Ingrid Bryntse;John Irvine;Brian Mitchell;Vladimir Balakirev - 通讯作者:
Vladimir Balakirev
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson - 通讯作者:
Claire Thompson
Internal criteria for scientific choice: An evaluation of research in high-energy physics using electron accelerators
- DOI:
10.1007/bf02192823 - 发表时间:
1981-09-01 - 期刊:
- 影响因子:3.200
- 作者:
Benjamin R. Martin;John Irvine - 通讯作者:
John Irvine
John Irvine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Irvine', 18)}}的其他基金
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003686/1 - 财政年份:2022
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Light Element Analysis Facility - LEAF
轻元素分析设备 - LEAF
- 批准号:
EP/T019298/1 - 财政年份:2020
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Electron Microscopy for the Characterisation and Manipulation of Advanced Functional Materials and their Interfaces at the Nanoscale
用于纳米级先进功能材料及其界面表征和操作的电子显微镜
- 批准号:
EP/R023751/1 - 财政年份:2018
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Multiscale tuning of interfaces and surfaces for energy applications
能源应用界面和表面的多尺度调整
- 批准号:
EP/P007821/1 - 财政年份:2017
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Tailoring of microstructural evolution in impregnated SOFC electrodes
浸渍 SOFC 电极微观结构演变的定制
- 批准号:
EP/M014304/1 - 财政年份:2015
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Scaled Electricity Storage Using Lithium-Sulfur Batteries
使用锂硫电池进行大规模电力存储
- 批准号:
EP/N508639/1 - 财政年份:2015
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Energy Materials-Discovery, Characterisation and Application
能源材料-发现、表征和应用
- 批准号:
EP/K015540/1 - 财政年份:2013
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Materials World Network: Tailoring Electrocatalytic Materials by Controlled Surface Exsolution
材料世界网络:通过控制表面溶出定制电催化材料
- 批准号:
EP/J018414/1 - 财政年份:2013
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Exploratory Study Of Novel Oxide Conductors
新型氧化物导体的探索性研究
- 批准号:
EP/J02094X/1 - 财政年份:2012
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
Advancing Biogas Utilization through Fuel Flexible SOFC
通过燃料灵活的 SOFC 促进沼气利用
- 批准号:
EP/I037016/1 - 财政年份:2011
- 资助金额:
$ 199.07万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Standard Grant
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
- 批准号:
24K17589 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Standard Grant
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
- 批准号:
DP240102006 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Discovery Projects
Two-dimensional nanomaterials for wearable zinc ion battery
用于可穿戴锌离子电池的二维纳米材料
- 批准号:
DP240102177 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Discovery Projects
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Standard Grant
Targeted pathogen-specific nanomaterials for delivery and biosensor applications within plants
用于植物内递送和生物传感器应用的靶向病原体特异性纳米材料
- 批准号:
24K17831 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
- 批准号:
2340728 - 财政年份:2024
- 资助金额:
$ 199.07万 - 项目类别:
Continuing Grant