Tailoring of microstructural evolution in impregnated SOFC electrodes

浸渍 SOFC 电极微观结构演变的定制

基本信息

  • 批准号:
    EP/M014304/1
  • 负责人:
  • 金额:
    $ 156.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Solid oxide fuel cells are highly intricate devices with many interfaces which are typically formed at high temperatures. This places many constraints in terms of chemical and physical compatibility upon such devices limiting both performance and durability. Such problems strongly restrict materials choice and impose significant cost penalties on SOFC manufacture. The utilisation of solution methods to introduce part of the SOFCs active constituents is a highly attractive approach that has gained much interest in recent years. This can involve infiltration of nanoparticles or impregnation of precursor solutions to form phases in situ. Much lower reaction temperatures can be utilised avoiding problems with compatibility and affording wider materials choice. Typically such process involves formation of a scaffold structure by high temperature processing and then impregnation of an electrode by lower temperature methods. We have successfully applied this approach to three different novel variants of SOFC architectures. These are electrolyte supported oxide anodes, oxide anode supported and metal anode supported cells. Excellent performances can be obtained and good redox properties demonstrated; however, progress needs to be made to ensure high durability. The impregnates tend to form well dispersed nanoparticles, but these might be expected to agglomerate over time, in fuel cell operating conditions, to reduce overall performance. Through the national and European projects where we applied the impregnation concept, we have learned much about impregnation and how to develop appropriately dispersed electrode structures. The electrode structure is seen to evolve with use and clear opportunities exist to optimise structures through improved processing. Most important has been the realisation that there are strong interplays between the materials impregnated, the substrate and the solvent utilised. Even subtle changes in electrode composition, demand significant changes in impregnation chemistry to maintain the maximum levels of performance. In this project we seek to further develop control of this impregnation chemistry and hence to develop generic methods for developing controlled microstructures via solution routes across several platforms. These new chemistries will be applied to electrolyte- and anode-supported SOFC geometries and properties optimised for performance, durability and redox tolerance. The overall objective is to develop and demonstrate this new approach as one that can be successfully applied to manufacture of fuel cells that combine high performance with durability and resistance to contaminants. We will apply this approach typically for an impregnated oxide electrode with metallic catalyst to zirconia, strontium titanate and metal supports and develop our understanding of the fundamental chemistry across this range of platforms. By so doing we will develop methodologies to tailor impregnations over a broad range of composition space. Studies of performance, durability and resistance to contaminants utilising electrochemical, spectroscopic and microstructural techniques will be used to inform choice of impregnate systems. Final outcomes will be delivery of novel tailored chemistries for different SOFC application modes and geometries, demonstration of novel cell technologies with robust, high performance characteristics at SOFC developer ready scales and development of new routes and instrumentation for SOFC manufacture.
固体氧化物燃料电池是一种高度复杂的装置,具有许多界面,通常在高温下形成。这在化学和物理兼容性方面对这种设备施加了许多限制,限制了性能和耐用性。这些问题强烈地限制了材料的选择,并对SOFC的制造造成了巨大的成本损失。利用溶液方法引入部分SOFC活性成分是一种极具吸引力的方法,近年来引起了人们的极大兴趣。这可能涉及纳米颗粒的渗透或前体溶液的浸渍以在原位形成相。可以利用更低的反应温度,避免了兼容性问题,并提供了更广泛的材料选择。通常,这种工艺包括通过高温处理形成支架结构,然后通过较低温度的方法浸渍电极。我们已经成功地将这种方法应用于SOFC架构的三种不同的新变种。它们是电解液支持的氧化物阳极、氧化物阳极支持的电池和金属阳极支持的电池。可以获得优异的性能,表现出良好的氧化还原性能,但需要取得进展,以确保高耐久性。浸渍物倾向于形成分散良好的纳米颗粒,但在燃料电池的运行条件下,随着时间的推移,这些纳米颗粒可能会聚集在一起,从而降低整体性能。通过我们应用浸渍概念的国家和欧洲项目,我们学到了很多关于浸渍以及如何开发适当分散电极结构的知识。电极结构被认为是随着使用而演变的,显然存在通过改进工艺来优化结构的机会。最重要的是认识到,浸渍的材料、基材和所使用的溶剂之间存在着很强的相互作用。即使是电极成分的细微变化,也要求浸渍化学成分发生重大变化,以保持最高水平的性能。在这个项目中,我们寻求进一步开发对这种浸渍化学的控制,从而开发通过跨越几个平台的溶液路线来开发受控微结构的通用方法。这些新的化学成分将应用于电解液和阳极支持的SOFC几何结构和性能,优化了性能、耐用性和氧化还原耐受性。总的目标是开发和展示这种新的方法,作为一种可以成功地应用于燃料电池制造的方法,这种燃料电池结合了高性能、耐用性和抗污染能力。我们将典型地将这种方法应用于带有金属催化剂的浸渍氧化物电极,以用于氧化锆、钛酸锶和金属载体,并在这一系列平台上发展我们对基础化学的理解。通过这样做,我们将开发方法,以量身定做广泛的合成空间的浸渍。将利用电化学、光谱和微观结构技术对浸渍系统的性能、耐久性和抗污染性进行研究,为浸渍系统的选择提供信息。最终成果将是为不同的SOFC应用模式和几何形状提供新的量身定做的化学产品,在SOFC开发商准备好的规模上展示具有坚固、高性能特征的新型电池技术,并为SOFC制造开发新的路线和仪器。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of Tailored Porous Microstructures for Infiltrated Catalyst Electrodes by Aqueous Tape Casting Methods
通过水流带铸造方法开发用于渗透催化剂电极的定制多孔微结构
  • DOI:
    10.1149/06801.2047ecst
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cassidy M
  • 通讯作者:
    Cassidy M
Evaluation of inkjet-printed spinel coatings on standard and surface nitrided ferritic stainless steels for interconnect application in solid oxide fuel cell devices
  • DOI:
    10.1016/j.ceramint.2022.04.003
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    S. Pandiyan;M. Bianco;A. El-kharouf;R. Tomov;R. Steinberger‐Wilckens
  • 通讯作者:
    S. Pandiyan;M. Bianco;A. El-kharouf;R. Tomov;R. Steinberger‐Wilckens
Infiltration of commercially available, anode supported SOFC's via inkjet printing
通过喷墨印刷渗透市售阳极支持的 SOFC
  • DOI:
    10.17863/cam.9678
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitchell-Williams T
  • 通讯作者:
    Mitchell-Williams T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Irvine其他文献

Enhanced CO2 electrolysis at redox manipulated interfaces
氧化还原操作界面处增强 CO2 电解
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wenyuan Wang;Lizhen Gan;John Lemmon;Fanglin Chen;John Irvine;Kui Xie
  • 通讯作者:
    Kui Xie
Structural Anomalies of 1223 Hg(Tl)–Ba–Ca–Cu–O Superconductors in the Temperature Range 100–300 K
  • DOI:
    10.1023/a:1022610017728
  • 发表时间:
    1998-08-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Svetlana Titova;Ingrid Bryntse;John Irvine;Brian Mitchell;Vladimir Balakirev
  • 通讯作者:
    Vladimir Balakirev
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson
  • 通讯作者:
    Claire Thompson
Internal criteria for scientific choice: An evaluation of research in high-energy physics using electron accelerators
  • DOI:
    10.1007/bf02192823
  • 发表时间:
    1981-09-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Benjamin R. Martin;John Irvine
  • 通讯作者:
    John Irvine

John Irvine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Irvine', 18)}}的其他基金

High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
  • 批准号:
    EP/W003686/1
  • 财政年份:
    2022
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Light Element Analysis Facility - LEAF
轻元素分析设备 - LEAF
  • 批准号:
    EP/T019298/1
  • 财政年份:
    2020
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Emergent Nanomaterials (Critical Mass Proposal)
新兴纳米材料(临界质量提案)
  • 批准号:
    EP/R023522/1
  • 财政年份:
    2018
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Electron Microscopy for the Characterisation and Manipulation of Advanced Functional Materials and their Interfaces at the Nanoscale
用于纳米级先进功能材料及其界面表征和操作的电子显微镜
  • 批准号:
    EP/R023751/1
  • 财政年份:
    2018
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Multiscale tuning of interfaces and surfaces for energy applications
能源应用界面和表面的多尺度调整
  • 批准号:
    EP/P007821/1
  • 财政年份:
    2017
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Scaled Electricity Storage Using Lithium-Sulfur Batteries
使用锂硫电池进行大规模电力存储
  • 批准号:
    EP/N508639/1
  • 财政年份:
    2015
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Energy Materials-Discovery, Characterisation and Application
能源材料-发现、表征和应用
  • 批准号:
    EP/K015540/1
  • 财政年份:
    2013
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Materials World Network: Tailoring Electrocatalytic Materials by Controlled Surface Exsolution
材料世界网络:通过控制表面溶出定制电催化材料
  • 批准号:
    EP/J018414/1
  • 财政年份:
    2013
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Exploratory Study Of Novel Oxide Conductors
新型氧化物导体的探索性研究
  • 批准号:
    EP/J02094X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
Advancing Biogas Utilization through Fuel Flexible SOFC
通过燃料灵活的 SOFC 促进沼气利用
  • 批准号:
    EP/I037016/1
  • 财政年份:
    2011
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant

相似海外基金

Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
  • 批准号:
    2317263
  • 财政年份:
    2023
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Continuing Grant
Multiscale modelling of the microstructural evolution of nervous tissues through high-performance computing
通过高性能计算对神经组织微观结构演化进行多尺度建模
  • 批准号:
    EP/Y001583/1
  • 财政年份:
    2023
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grant
CAREER: Understanding multiscale sintering kinetics and microstructural evolution in binder-based metal additive manufacturing
职业:了解基于粘合剂的金属增材制造中的多尺度烧结动力学和微观结构演变
  • 批准号:
    2237433
  • 财政年份:
    2023
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Continuing Grant
Catalyst Project: Microstructural Evolution and Constitutive Modeling of Creep and Elevated Temperature Quasi-Static Tensile Deformation in Additively Manufactured Grade 91 Alloy
催化剂项目:增材制造 91 级合金蠕变和高温准静态拉伸变形的微观结构演化和本构建模
  • 批准号:
    2200613
  • 财政年份:
    2022
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Standard Grant
Theoretical modeling of microstructural evolution driven by interface dynamics without local equilibrium
无局部平衡的界面动力学驱动的微观结构演化的理论建模
  • 批准号:
    22H00252
  • 财政年份:
    2022
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Microstructural evolution and metallurgic reactions in dissimilar joints of Nitinol wire and medical alloys during laser microwelding
激光微焊接过程中镍钛诺丝和医用合金异种接头的微观结构演变和冶金反应
  • 批准号:
    576777-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Alliance Grants
Time-Resolved X-Ray Tomography Studies of Microstructural Evolution in Materials
材料微观结构演化的时间分辨 X 射线断层扫描研究
  • 批准号:
    516809-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Microstructural evolution and thermo-mechanical behaviour of fine-grain graphite materials
细晶石墨材料的微观结构演变和热机械行为
  • 批准号:
    2485520
  • 财政年份:
    2020
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Studentship
Characterizing and modeling on microstructural evolution during intercritical annealing of high performance medium Mn steel
高性能中锰钢相间退火过程中微观结构演变的表征和建模
  • 批准号:
    410335988
  • 财政年份:
    2019
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Research Grants
Time-Resolved X-Ray Tomography Studies of Microstructural Evolution in Materials
材料微观结构演化的时间分辨 X 射线断层扫描研究
  • 批准号:
    516809-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 156.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了