National Centre for Nuclear Robotics (NCNR)

国家核机器人中心 (NCNR)

基本信息

  • 批准号:
    EP/R02572X/1
  • 负责人:
  • 金额:
    $ 1561.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Nuclear facilities require a wide variety of robotics capabilities, engendering a variety of extreme RAI challenges. NCNR brings together a diverse consortium of experts in robotics, AI, sensors, radiation and resilient embedded systems, to address these complex problems.In high gamma environments, human entries are not possible at all. In alpha-contaminated environments, air-fed suited human entries are possible, but engender significant secondary waste (contaminated suits), and reduced worker capability. We have a duty to eliminate the need for humans to enter such hazardous environments wherever technologically possible.Hence, nuclear robots will typically be remote from human controllers, creating significant opportunities for advanced telepresence. However, limited bandwidth and situational awareness demand increased intelligence and autonomous control capabilities on the robot, especially for performing complex manipulations. Shared control, where both human and AI collaboratively control the robot, will be critical because i) safety-critical environments demand a human in the loop, however ii) complex remote actions are too difficult for a human to perform reliably and efficiently.Before decommissioning can begin, and while it is progressing, characterization is needed. This can include 3D modelling of scenes, detection and recognition of objects and materials, as well as detection of contaminants, measurement of types and levels of radiation, and other sensing modalities such as thermal imaging. This will necessitate novel sensor design, advanced algorithms for robotic perception, and new kinds of robots to deploy sensors into hard-to-reach locations.To carry out remote interventions, both situational awareness for the remote human operator, and also guidance of autonomous/semi-autonomous robotic actions, will need to be informed by real-time multi-modal vision and sensing, including: real-time 3D modelling and semantic understanding of objects and scenes; active vision in dynamic scenes and vision-guided navigation and manipulation.The nuclear industry is high consequence, safety critical and conservative. It is therefore critically important to rigorously evaluate how well human operators can control remote technology to safely and efficiently perform the tasks that industry requires.All NCNR research will be driven by a set of industry-defined use-cases, WP1. Each use-case is linked to industry-defined testing environments and acceptance criteria for performance evaluation in WP11. WP2-9 deliver a variety of fundamental RAI research, including radiation resilient hardware, novel design of both robotics and radiation sensors, advanced vision and perception algorithms, mobility and navigation, grasping and manipulation, multi-modal telepresence and shared control.The project is based on modular design principles. WP10 develops standards for modularisation and module interfaces, which will be met by a diverse range of robotics, sensing and AI modules delivered by WPs2-9. WP10 will then integrate multiple modules onto a set of pre-commercial robot platforms, which will then be evaluated according to end-user acceptance criteria in WP11.WP12 is devoted to technology transfer, in collaboration with numerous industry partners and the Shield Investment Fund who specialise in venture capital investment in RAI technologies, taking novel ideas through to fully fledged commercial deployments. Shield have ring-fenced £10million capital to run alongside all NCNR Hub research, to fund spin-out companies and industrialisation of Hub IP.We have rich international involvement, including NASA Jet Propulsion Lab and Carnegie Melon National Robotics Engineering Center as collaborators in USA, and collaboration from Japan Atomic Energy Agency to help us carry out test-deployments of NCNR robots in the unique Fukushima mock-up testing facilities at the Naraha Remote Technology Development Center.
核设施需要各种各样的机器人能力,从而产生了各种极端的RAI挑战。NCNR汇集了机器人、人工智能、传感器、辐射和弹性嵌入式系统方面的专家,以解决这些复杂的问题。在高伽马环境中,人类根本不可能进入。在阿尔法污染的环境中,空气供给的人适合进入是可能的,但会产生大量的二次废物(污染的衣服),并降低工人的能力。我们有责任在技术上可能的情况下消除人类进入这种危险环境的必要性。因此,核机器人通常远离人类控制器,为先进的远程呈现创造了重要机会。然而,有限的带宽和态势感知要求机器人具有更高的智能和自主控制能力,特别是在执行复杂操作时。共享控制,即人类和人工智能协同控制机器人,将是至关重要的,因为i)安全关键型环境需要人类参与回路,然而ii)复杂的远程操作对于人类来说太难可靠有效地执行。在退役开始之前,以及在退役过程中,需要进行表征。这可以包括场景的3D建模,物体和材料的检测和识别,以及污染物的检测,辐射类型和水平的测量,以及热成像等其他传感模式。这将需要新型传感器设计、先进的机器人感知算法以及新型机器人将传感器部署到难以到达的位置。为了进行远程干预,远程操作员的态势感知以及自主/半自主机器人行动的指导都需要通过实时多模态视觉和传感来通知,包括:实时3D建模和物体和场景的语义理解;动态场景中的主动视觉以及视觉引导的导航和操作。核工业是高后果、安全关键和保守的。因此,严格评估人类操作员控制远程技术的能力,以安全有效地执行行业要求的任务至关重要。所有NCNR研究都将由一组行业定义的用例WP 1驱动。每个用例都与行业定义的测试环境和WP 11中性能评估的验收标准相关联。WP 2 -9提供各种基础RAI研究,包括辐射弹性硬件,机器人和辐射传感器的新颖设计,先进的视觉和感知算法,移动和导航,抓取和操纵,多模式远程呈现和共享控制。该项目基于模块化设计原则。WP10制定了模块化和模块接口的标准,WP 2 -9提供的各种机器人、传感和AI模块将满足这些标准。WP10将把多个模块集成到一组预商用机器人平台上,然后根据WP 11中的最终用户验收标准进行评估。WP 12致力于技术转让,与众多行业合作伙伴和专门从事RAI技术风险投资的Shield投资基金合作,将新想法转化为全面的商业部署。Shield拥有1000万英镑的资金,与所有NCNR Hub研究一起运行,资助分拆公司和Hub IP的工业化。我们拥有丰富的国际参与,包括NASA喷气推进实验室和卡内基梅隆国家机器人工程中心作为美国的合作伙伴,和日本原子能机构的合作,帮助我们在独特的福岛模拟中进行NCNR机器人的测试部署-在Naraha远程技术开发中心建立测试设施。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proxy Circuits for Fault-Tolerant Primitive Interfacing in Reconfigurable Devices Targeting Extreme Environments
针对极端环境的可重构设备中容错原语接口的代理电路
  • DOI:
    10.1109/iscas45731.2020.9181282
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adetomi A
  • 通讯作者:
    Adetomi A
Soft Wearable Glove for Tele-Rehabilitation Therapy of Clenched Hand/Fingers Patients
用于握紧手/手指患者的远程康复治疗的柔软可穿戴手套
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abrar T
  • 通讯作者:
    Abrar T
Haptic-guided assisted telemanipulation approach for grasping desired objects from heaps
用于从堆中抓取所需物体的触觉引导辅助远程操作方法
  • DOI:
    10.48550/arxiv.2307.07053
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adjigble M
  • 通讯作者:
    Adjigble M
An Inhomogeneous Structured Eversion Actuator
一种非均匀结构外翻执行器
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abrar;Ahmed Hassan;F. Putzu;Hareesh Godaba;A. Ataka;K. Althoefer
  • 通讯作者:
    K. Althoefer
3D Spectral Domain Registration-Based Visual Servoing
  • DOI:
    10.1109/icra48891.2023.10160430
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maxime Adjigble;B. Tamadazte;Cristiana Miranda de Farias;R. Stolkin;Naresh Marturi
  • 通讯作者:
    Maxime Adjigble;B. Tamadazte;Cristiana Miranda de Farias;R. Stolkin;Naresh Marturi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rustam Stolkin其他文献

Semantic Segmentation for SAR Image Based on Texture Complexity Analysis and Key Superpixels
基于纹理复杂度分析和关键超像素的SAR图像语义分割
  • DOI:
    10.3390/rs12132141
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronghua Shang;Pei Peng;Fanhua Shang;Licheng Jiao;Yifei Shen;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
Stacked auto-encoder for classification of polarimetric SAR images based on scattering energy
基于散射能量的偏振SAR图像分类的堆叠式自动编码器
  • DOI:
    10.1080/01431161.2019.1579378
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ronghua Shang;Yongkun Liu;Jiaming Wang;Licheng Jiao;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
A Novel Weakly-supervised approach for RGB-D-based Nuclear Waste Object Detection and Categorization
一种基于 RGB-D 的核废料物体检测和分类的新型弱监督方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Li Sun;Cheng Zhao;Yan Zhi;Pengcheng Liu;Tom Duckett;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
SAR Image Segmentation Based on Constrained Smoothing and Hierarchical Label Correction
基于约束平滑和分层标签校正的SAR图像分割
Hyperparameter-optimized CNN and CNN-LSTM for Predicting the Remaining Useful Life of Lithium-Ion Batteries
用于预测锂离子电池剩余使用寿命的超参数优化 CNN 和 CNN-LSTM

Rustam Stolkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rustam Stolkin', 18)}}的其他基金

Perception-guided robust and reproducible robotic grasping and manipulation
感知引导的稳健且可重复的机器人抓取和操作
  • 批准号:
    EP/S032428/1
  • 财政年份:
    2019
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
Robust remote sensing for multi-modal characterisation in nuclear and other extreme environments
用于核和其他极端环境中多模态表征的鲁棒遥感
  • 批准号:
    EP/P017487/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
Robotic systems for retrieval of contaminated material from hazardous zones
用于从危险区域检索受污染材料的机器人系统
  • 批准号:
    EP/M026477/1
  • 财政年份:
    2015
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant

相似海外基金

REU Site: ASL-English Bilingual Cognitive and Educational Neuroscience Training and Research Experience (ASL-English Bilingual CENTRE)
REU网站:ASL-英语双语认知和教育神经科学培训和研究经验(ASL-英语双语中心)
  • 批准号:
    2349454
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Standard Grant
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
  • 批准号:
    IC230100001
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Industrial Transformation Training Centres
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
International Centre for Enzyme Design (ICED)
国际酶设计中心 (ICED)
  • 批准号:
    EP/Z531157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
  • 批准号:
    EP/Z53156X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
  • 批准号:
    MR/X033651/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Fellowship
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
International Centre of Excellence in the Treatment of Pathological Fractures
国际病理性骨折治疗卓越中心
  • 批准号:
    EP/Z531248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
Princeton-Oxford-Cambridge Centre-to-Centre Collaboration on Soft Functional Energy Materials
普林斯顿-牛津-剑桥软功能能源材料中心间合作
  • 批准号:
    EP/Z531303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1561.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了