Perception-guided robust and reproducible robotic grasping and manipulation
感知引导的稳健且可重复的机器人抓取和操作
基本信息
- 批准号:EP/S032428/1
- 负责人:
- 金额:$ 44.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at developing and testing perception and manipulation strategies that will allow a robot to grasp and manipulate objects from a complex scene, e.g., an unstructured self-occluding heap of reflective metallic parts in manufacturing environments, or a heap of unknown/un-modeled and/or deformable waste materials in nuclear decommissioning or mixed waste recycling. The project addresses the key challenges mentioned in the call, namely, the grasping and manipulation of objects by robots using novel, hardware-independent, robust techniques, composed of modularisable subtasks. General strategies will be developed that will be reproducible on different hardware configurations. Indeed, from the outset, the project focuses on robustness and reproducibility, which are key concepts that connect all project objectives. The fundamental scientific questions addressed in the project can be summarized as follows: 1) Robust visual data collection, segmentation and production of sets of graspable features in complex and difficult real scenes, 2) Grasp planning based on grasping visible features (instead of object models) and hardware independent implementation of the grasping strategies, 3) Grasping or re-grasping strategies, to best enable desired post-grasp actions, and also based on extrinsic dexterity, namely the exploitation of the environment or the robot's dynamic capabilities, and 4) Integration of all project components into an operational scheme that will be implemented in the laboratory settings of all participants. Regarding visual data collection and analysis (item 1), algorithms capable of working in unstructured environments associated with uncertainty will be developed. The project will tackle difficult environments, which are characteristic of a variety of industrial applications. We note that industrial benchmark datasets are comparatively few in the vision and robotics research communities, despite their clear economic importance and also significant intellectual complexity. In item 2, the concept of graspable features will be developed and used to devise novel grasping strategies. Means of evaluating the performance of the manipulation strategies will also be developed in order to assess the quality of the results obtained. By managing the perception-action loop using the detection of graspable features, the project will also provide tools for potentially handling unknown objects in unknown environments. Item 3 follows the concept of graspable features since a graspable feature may yield a proper temporary grasp but may require re-grasping depending on the task to be performed. Finally, the integration of the project components will also raise issues of implementation, real-time constraints and other practical limitations. Experiments will be conducted in all participating research groups, initially using identical or similar equipment and then using different set ups and configurations in order to demonstrate generalisation, reproducibility and robustness. The perception aspect of the work will focus on visually complex, noisy and cluttered scenes. The manipulation aspect of the work will focus on generality and reproducibility, based on searching for graspable features rather than relying on object models. Finally, the project will generate a large amount of data, which will be logged, shared and made available to the international robotics research community as a set of public benchmark challenges, including training and testing data.
这项研究旨在开发和测试感知和操纵策略,使机器人能够从复杂的场景中抓取和操纵物体,例如,制造环境中的反射金属部件的非结构化自封闭堆,或者核退役或混合废物回收中的未知/未建模和/或可变形废料的堆。该项目解决了电话中提到的关键挑战,即机器人使用新颖的,硬件独立的,强大的技术来抓取和操纵物体,这些技术由可模块化的子任务组成。将制定可在不同硬件配置上重现的一般策略。事实上,从一开始,该项目就专注于稳健性和可重复性,这是连接所有项目目标的关键概念。该项目涉及的基本科学问题可归纳如下:1)在复杂和困难的真实的场景中鲁棒的视觉数据收集、分割和可抓取特征集的产生,2)基于抓取可见特征的抓取规划(而不是对象模型)和硬件独立实现抓取策略,3)抓取或重新抓取策略,以最好地实现期望的抓取后动作,并且还基于外部灵巧性,即利用环境或机器人的动态能力,以及4)将所有项目组件集成到将在所有参与者的实验室设置中实施的操作方案中。关于视觉数据收集和分析(项目1),将开发能够在与不确定性相关的非结构化环境中工作的算法。该项目将解决困难的环境,这是各种工业应用的特点。我们注意到,工业基准数据集在视觉和机器人研究领域相对较少,尽管它们具有明显的经济重要性和显著的智力复杂性。在第2项中,可抓握特征的概念将被开发并用于设计新的抓握策略。还将开发评价操作策略性能的方法,以评估所获得结果的质量。通过使用可抓取特征的检测来管理感知-动作循环,该项目还将提供用于在未知环境中处理未知对象的工具。第3项遵循可抓握特征的概念,因为可抓握特征可以产生适当的临时抓握,但是根据要执行的任务可能需要重新抓握。最后,项目各组成部分的整合也将引起执行、实时限制和其他实际限制等问题。实验将在所有参与的研究组中进行,最初使用相同或相似的设备,然后使用不同的设置和配置,以证明通用性,重现性和耐用性。工作的感知方面将集中在视觉上复杂,嘈杂和混乱的场景。操作方面的工作将集中在通用性和可重复性,基于搜索可抓取的功能,而不是依赖于对象模型。最后,该项目将产生大量数据,这些数据将被记录、共享并作为一组公共基准挑战提供给国际机器人研究界,包括训练和测试数据。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Haptic-guided assisted telemanipulation approach for grasping desired objects from heaps
用于从堆中抓取所需物体的触觉引导辅助远程操作方法
- DOI:10.48550/arxiv.2307.07053
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Adjigble M
- 通讯作者:Adjigble M
Local Region-to-Region Mapping-based Approach to Classify Articulated Objects
基于局部区域到区域映射的铰接物体分类方法
- DOI:10.1109/crv60082.2023.00030
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Aggarwal A
- 通讯作者:Aggarwal A
3D Spectral Domain Registration-Based Visual Servoing
- DOI:10.1109/icra48891.2023.10160430
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Maxime Adjigble;B. Tamadazte;Cristiana Miranda de Farias;R. Stolkin;Naresh Marturi
- 通讯作者:Maxime Adjigble;B. Tamadazte;Cristiana Miranda de Farias;R. Stolkin;Naresh Marturi
SpectGRASP: Robotic Grasping by Spectral Correlation
SpectGRASP:通过光谱相关进行机器人抓取
- DOI:10.1109/iros51168.2021.9636235
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Adjigble M
- 通讯作者:Adjigble M
Unsupervised learning-based approach for detecting 3D edges in depth maps.
- DOI:10.1038/s41598-023-50899-3
- 发表时间:2024-01-08
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rustam Stolkin其他文献
Semantic Segmentation for SAR Image Based on Texture Complexity Analysis and Key Superpixels
基于纹理复杂度分析和关键超像素的SAR图像语义分割
- DOI:
10.3390/rs12132141 - 发表时间:
2020-07 - 期刊:
- 影响因子:0
- 作者:
Ronghua Shang;Pei Peng;Fanhua Shang;Licheng Jiao;Yifei Shen;Rustam Stolkin - 通讯作者:
Rustam Stolkin
Stacked auto-encoder for classification of polarimetric SAR images based on scattering energy
基于散射能量的偏振SAR图像分类的堆叠式自动编码器
- DOI:
10.1080/01431161.2019.1579378 - 发表时间:
2019-02 - 期刊:
- 影响因子:3.4
- 作者:
Ronghua Shang;Yongkun Liu;Jiaming Wang;Licheng Jiao;Rustam Stolkin - 通讯作者:
Rustam Stolkin
A Novel Weakly-supervised approach for RGB-D-based Nuclear Waste Object Detection and Categorization
一种基于 RGB-D 的核废料物体检测和分类的新型弱监督方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.3
- 作者:
Li Sun;Cheng Zhao;Yan Zhi;Pengcheng Liu;Tom Duckett;Rustam Stolkin - 通讯作者:
Rustam Stolkin
SAR Image Segmentation Based on Constrained Smoothing and Hierarchical Label Correction
基于约束平滑和分层标签校正的SAR图像分割
- DOI:
10.1109/tgrs.2021.3076446 - 发表时间:
2022 - 期刊:
- 影响因子:8.2
- 作者:
Ronghua Shang;Mengmeng Liu;Junkai Lin;Jie Feng;Yangyang Li;Rustam Stolkin;Licheng Jiao - 通讯作者:
Licheng Jiao
Hyperparameter-optimized CNN and CNN-LSTM for Predicting the Remaining Useful Life of Lithium-Ion Batteries
用于预测锂离子电池剩余使用寿命的超参数优化 CNN 和 CNN-LSTM
- DOI:
10.1109/icicis58388.2023.10391176 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alireza Rastegarpanah;Cesar Alan Contreras;Rustam Stolkin - 通讯作者:
Rustam Stolkin
Rustam Stolkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rustam Stolkin', 18)}}的其他基金
National Centre for Nuclear Robotics (NCNR)
国家核机器人中心 (NCNR)
- 批准号:
EP/R02572X/1 - 财政年份:2017
- 资助金额:
$ 44.31万 - 项目类别:
Research Grant
Robust remote sensing for multi-modal characterisation in nuclear and other extreme environments
用于核和其他极端环境中多模态表征的鲁棒遥感
- 批准号:
EP/P017487/1 - 财政年份:2017
- 资助金额:
$ 44.31万 - 项目类别:
Research Grant
Robotic systems for retrieval of contaminated material from hazardous zones
用于从危险区域检索受污染材料的机器人系统
- 批准号:
EP/M026477/1 - 财政年份:2015
- 资助金额:
$ 44.31万 - 项目类别:
Research Grant
相似海外基金
CRII: III: Metadata-guided Imbalance-Modeling for Robust Computational Healthcare
CRII:III:元数据引导的稳健计算医疗保健不平衡建模
- 批准号:
2245920 - 财政年份:2023
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
Machine-learning guided experimental approaches for developing a robust nanoscale delivery platform for the treatment of pancreatic cancer
机器学习引导的实验方法,用于开发用于治疗胰腺癌的强大纳米级递送平台
- 批准号:
2749190 - 财政年份:2022
- 资助金额:
$ 44.31万 - 项目类别:
Studentship
NRI: FND: Robust Learning of Sequential Motion from Human Demonstrations to Enable Robot-Guided Exercise Training
NRI:FND:从人体演示中稳健地学习顺序运动,以实现机器人引导的运动训练
- 批准号:
1830597 - 财政年份:2019
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Vision-guided Control of Robust Perching: From Biological to Robotic Flyers
RI:小型:协作研究:视觉引导的稳健栖息控制:从生物到机器人传单
- 批准号:
1815476 - 财政年份:2018
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Vision-guided Control of Robust Perching: From Biological to Robotic Flyers
RI:小型:协作研究:视觉引导的稳健栖息控制:从生物到机器人传单
- 批准号:
1815519 - 财政年份:2018
- 资助金额:
$ 44.31万 - 项目类别:
Standard Grant
Spacer Enabled Robust Radiation Therapy (SERRT)
间隔器启用的稳健放射治疗 (SERRT)
- 批准号:
10177915 - 财政年份:2018
- 资助金额:
$ 44.31万 - 项目类别:
Towards Robust Ultrasound Guided Transcatheter Aortic Valve Implantation
迈向稳健的超声引导经导管主动脉瓣植入术
- 批准号:
489819-2016 - 财政年份:2017
- 资助金额:
$ 44.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards Robust Ultrasound Guided Transcatheter Aortic Valve Implantation
迈向稳健的超声引导经导管主动脉瓣植入术
- 批准号:
489819-2016 - 财政年份:2016
- 资助金额:
$ 44.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Real-time robust non-linear registration for ultrasound guided neurosurgery
用于超声引导神经外科手术的实时鲁棒非线性配准
- 批准号:
404243-2011 - 财政年份:2013
- 资助金额:
$ 44.31万 - 项目类别:
Postdoctoral Fellowships
Real-time robust non-linear registration for ultrasound guided neurosurgery
用于超声引导神经外科手术的实时鲁棒非线性配准
- 批准号:
404243-2011 - 财政年份:2012
- 资助金额:
$ 44.31万 - 项目类别:
Postdoctoral Fellowships