Robotic systems for retrieval of contaminated material from hazardous zones

用于从危险区域检索受污染材料的机器人系统

基本信息

  • 批准号:
    EP/M026477/1
  • 负责人:
  • 金额:
    $ 70.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Both Korean and UK nuclear industries share the same challenge of accessing large radio-chemical process environments to perform remote intervention tasks. In particular, both UK and Korea have identified a significant need for unmanned systems which can handle and retrieve contaminated materials in zones which are too hazardous to risk manned entries.This project will directly address this need by developing novel robotic systems which can enter, monitor, and carry out manipulative actions on a wide variety of objects and materials in nuclear decommissioning environments, which would otherwise remain inaccessible and unmanageable.The UoB-KAERI-NNL consortium will develop hardware, software, algorithms and control methods for a mobile robot manipulator, comprising an unmanned vehicle equipped with an arm and end-effectors (which could include hands and-or cutting devices), which can enter hazardous environments, perform a wide variety of manipulation tasks on materials inside those environments, and retrieve objects from the environment in a controlled fashion.Additionally, we will develop a smaller "child" pipe-climbing robot, which can ride on the mother vehicle and be deployed onto pipe-work (prevalent in many nuclear installations) via the mother vehicle's manipulator arm. The purpose of the child robot is to inspect zones which would otherwise be inaccessible in highly complex and 3D nuclear plant environments, for example to reach places that are high, narrow or cluttered. Additionally, cameras mounted on the child robot can provide useful alternative views of the mother-vehicle, facilitating autonomous "visual-servoing" control of the manipulator arm, and/or better tele-operative control by an expert human operator.The control approach will be one of "semi-autonomy", "tele-autonomy" or "variable-autonomy" which would therefore go beyond what has previously been attempted in nuclear environments. Traditionally, safety-critical industries have been very conservative about allowing the devolution of control from human operator to an autonomous machine, and have instead relied on direct tele-operation (e.g. a human controlling each joint of a robot arm by means of switches or joy-sticks). However, it is becoming increasingly clear that the combination of i) the vast scale of the decommissioning task, and ii) the complexity and high degrees-of-freedom of the robots needed to perform decommissioning, means that certain kinds of autonomous control will be required as "operator-assistance" technologies. For example, a human operator should be able to mouse-click on an object, and have the robot autonomously grasp it, rather than the human attempting to control two or more mobile base motors, six or more arm motors and two or more gripper fingers directly.Additionally, autonomous sensing approaches, such as 3D reconstruction of environments by computational vision, will be necessary for both situational awareness of the remote human operator, and automatic planning and control algorithms running on the robot. We will develop advanced computer vision and path-planning algorithms, which will enable collision-free navigation of the robot vehicle, and successful autonomous arm and hand trajectories to effect robust grasps on arbitrarily shaped objects and materials.Furthermore, we will develop advanced dynamics models and control methods to facilitate highly dynamic robot actions, such as braciation or swinging of the climbing child robot, or forceful actions of the mother mobile-maniplator with respect to contacts with its environment, for example cutting and grinding of objects, or dragging of grasped objects.The overall aim is to enable the safe, unmanned retrieval of contaminated materials from hazardous zones.
韩国和英国的核工业都面临着进入大型放射性化学过程环境以执行远程干预任务的挑战。特别是,英国和韩国都确定了对无人系统的重大需求,这种系统可以处理和回收在太危险而不能载人进入的区域中的污染材料。该项目将通过开发新型机器人系统直接解决这一需求,该系统可以进入、监测和操纵核退役环境中的各种物体和材料。UoB-KAERI-NNL联合体将为移动的机器人操作器开发硬件、软件、算法和控制方法,该机器人操作器包括配备手臂和末端执行器的无人驾驶车辆(其可包括手和-或切割装置),其可进入危险环境,在这些环境内的材料上执行各种各样的操作任务,并以可控的方式从环境中取回物体。此外,我们将开发一种更小的“儿童”爬管机器人,其可以骑在母车上并被部署到管道工程上(在许多核设施中普遍存在)子机器人的目的是检查在高度复杂的3D核电站环境中无法进入的区域,例如到达高、窄或杂乱的地方。此外,安装在子机器人上的摄像机可以提供有用的母车的替代视图,促进自主的“视觉伺服”控制的机械臂,和/或更好的远程操作控制的专家人类operator.The控制方法将是“半自主”,“远程自主”或“可变自主”,因此将超越了以前在核环境中尝试。传统上,安全关键型行业对于允许将控制从人类操作员转移到自主机器非常保守,而是依赖于直接远程操作(例如,人类通过开关或操纵杆控制机器人手臂的每个关节)。然而,越来越清楚的是,i)退役任务的巨大规模,以及ii)执行退役所需的机器人的复杂性和高度自由度的组合意味着某些类型的自主控制将被要求作为“操作员辅助”技术。例如,人类操作员应该能够鼠标点击物体,并使机器人自主地抓住它,而不是人类试图直接控制两个或更多个移动的基座电机、六个或更多个臂电机和两个或更多个夹持器手指。对于远程操作员的态势感知以及机器人上运行的自动规划和控制算法都是必要的。我们将开发先进的计算机视觉和路径规划算法,这将使机器人车辆的无碰撞导航,以及成功的自主臂和手轨迹,以实现对任意形状的物体和材料的鲁棒抓握。此外,我们将开发先进的动力学模型和控制方法,以促进高度动态的机器人动作,例如攀爬儿童机器人的支撑或摆动,或与其环境接触的强制动作,例如切割和研磨物体,或拖动抓取的物体。总体目标是能够从危险区域安全、无人操作地回收受污染材料。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytic grasp success prediction with tactile feedback
Grasp that optimises objectives along post-grasp trajectories
沿抓取后轨迹优化目标的抓取
  • DOI:
    10.48550/arxiv.1712.04295
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghalamzan E Amir M
  • 通讯作者:
    Ghalamzan E Amir M
Development of Surveying Robotic Systems at High Pipe Structures with a Visual-based Pole Climbing Robot
使用基于视觉的爬杆机器人开发高管道结构测量机器人系统
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. H. Kim
  • 通讯作者:
    J. H. Kim
Object carrying of hexapod robots with integrated mechanism of leg and arm
  • DOI:
    10.1016/j.rcim.2017.11.014
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    H. Deng;Guiyang Xin;Guoliang Zhong;M. Mistry
  • 通讯作者:
    H. Deng;Guiyang Xin;Guoliang Zhong;M. Mistry
Task-relevant grasp selection: A joint solution to planning grasps and manipulative motion trajectories
与任务相关的抓取选择:规划抓取和操纵运动轨迹的联合解决方案
  • DOI:
    10.1109/iros.2016.7759158
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghalamzan E. A
  • 通讯作者:
    Ghalamzan E. A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rustam Stolkin其他文献

Semantic Segmentation for SAR Image Based on Texture Complexity Analysis and Key Superpixels
基于纹理复杂度分析和关键超像素的SAR图像语义分割
  • DOI:
    10.3390/rs12132141
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronghua Shang;Pei Peng;Fanhua Shang;Licheng Jiao;Yifei Shen;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
Stacked auto-encoder for classification of polarimetric SAR images based on scattering energy
基于散射能量的偏振SAR图像分类的堆叠式自动编码器
  • DOI:
    10.1080/01431161.2019.1579378
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ronghua Shang;Yongkun Liu;Jiaming Wang;Licheng Jiao;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
A Novel Weakly-supervised approach for RGB-D-based Nuclear Waste Object Detection and Categorization
一种基于 RGB-D 的核废料物体检测和分类的新型弱监督方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Li Sun;Cheng Zhao;Yan Zhi;Pengcheng Liu;Tom Duckett;Rustam Stolkin
  • 通讯作者:
    Rustam Stolkin
SAR Image Segmentation Based on Constrained Smoothing and Hierarchical Label Correction
基于约束平滑和分层标签校正的SAR图像分割
Hyperparameter-optimized CNN and CNN-LSTM for Predicting the Remaining Useful Life of Lithium-Ion Batteries
用于预测锂离子电池剩余使用寿命的超参数优化 CNN 和 CNN-LSTM

Rustam Stolkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rustam Stolkin', 18)}}的其他基金

Perception-guided robust and reproducible robotic grasping and manipulation
感知引导的稳健且可重复的机器人抓取和操作
  • 批准号:
    EP/S032428/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.93万
  • 项目类别:
    Research Grant
National Centre for Nuclear Robotics (NCNR)
国家核机器人中心 (NCNR)
  • 批准号:
    EP/R02572X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 70.93万
  • 项目类别:
    Research Grant
Robust remote sensing for multi-modal characterisation in nuclear and other extreme environments
用于核和其他极端环境中多模态表征的鲁棒遥感
  • 批准号:
    EP/P017487/1
  • 财政年份:
    2017
  • 资助金额:
    $ 70.93万
  • 项目类别:
    Research Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
  • 批准号:
    60572117
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
  • 批准号:
    2339932
  • 财政年份:
    2024
  • 资助金额:
    $ 70.93万
  • 项目类别:
    Continuing Grant
Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Data Management and Bioinformatics
数据管理和生物信息学
  • 批准号:
    10633367
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
  • 批准号:
    10754029
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
PRECARE is an innovative and integrated platform designed to improve the developmental surveillance of the baby.
PRECARE 是一个创新的集成平台,旨在改善婴儿的发育监测。
  • 批准号:
    10603833
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Assessing the Dynamics of Hippocampal Neuronal Engrams in Memory Formation and Aging
评估海马神经元印迹在记忆形成和衰老中的动态
  • 批准号:
    10829020
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Increasing the Value of Genomic Medicine through Private Pharmacogenomic Reporting
通过私人药物基因组报告增加基因组医学的价值
  • 批准号:
    10760119
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Core 1: Biostatistics & Bioinformatics Core
核心1:生物统计学
  • 批准号:
    10716157
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Advancing Medical Illustration in Patient Education Materials: from Art to Science
推进患者教育材料中的医学插图:从艺术到科学
  • 批准号:
    10660634
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
Data Integration Core
数据集成核心
  • 批准号:
    10555808
  • 财政年份:
    2023
  • 资助金额:
    $ 70.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了