From Organic to Inorganic Chemistry: Exploiting the Isolobal Analogy to Develop Main Group Catalysts

从有机化学到无机化学:利用等瓣类比开发主族催化剂

基本信息

  • 批准号:
    EP/R026912/1
  • 负责人:
  • 金额:
    $ 108.14万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern society is highly reliant on organic materials for example in technological devices such as smartphone displays, or for drugs to tackle chronic illnesses. However, while the UK and western society seeks to improve the standard of living, the developing world also strives to improve technology and healthcare in their own countries. With a growing population and necessity to improve the quality of life globally there will be ever-increasing demands for the world's resources. This, combined with increased energy prices, could potentially lead to a deterioration in our current standard of living unless new energy and cost efficient processes are identified to meet the expanding global demand. Catalysis plays a pivotal role in maintaining the quality of everyday life worldwide as over 85% of chemical products are generated through catalytic methods. Through lowering the energy barrier of chemical processes, catalysts can direct a reaction's outcome both reducing energy consumption and making chemical processes more efficient. Therefore, the development of new catalysts and improvement of catalytic performance can have a direct influence on numerous major societal issues. Transition metals have dominated these processes owing to their rich reaction chemistry and high activity. However, many of the most active catalysts are typically composed of the so called "precious" metals which are, as their name suggests, expensive owing to their scarcity. While these catalysts are often highly efficient, one major pitfall includes their inherent toxicity. This is particularly significant for consumer products that are taken into the body (e.g. food products or pharmaceuticals) in which regulatory controls requires concentrations of toxic metals to parts per billion levels through meticulous post-reaction catalyst removal. One question which Dr Melen's research aims to answer is: could metal catalysts be circumvented altogether? Over the last 40 years the isolobal analogy (for which Hoffmann was awarded the Nobel Prize in Chemistry) has provided a theoretical foundation for rapid experimental developments in inorganic chemistry. The proposed work will apply the isolobal analogy to generate novel ambiphilic catalysts through the application of synthetic organic chemistry to main group systems. The compounds generated will then be tested in metal-free catalytic hydrogenation, carbon dioxide sequestration and C-H activation/borylation reactions. These are among some of the most important and topical areas of catalysis. For example, with a diverse range of commercial processes, the addition of molecular hydrogen to unsaturated substrates is unparalleled in the chemical industry. Equally, the direct utilisation of carbon dioxide as a C-1 feedstock has been identified by many nations as an area in need of exploration and development. While carbon dioxide is the primary carbon source for life on our planet, it is simultaneously the most significant greenhouse gas and approaches to sequester CO2 are becoming increasingly important. These processes will provide new methods for making fuels and useful compounds in a sustainable manner. Main group, or metal-free, catalysis has become a burgeoning field of which Dr Melen has been a key player. However, this flourishing field is still in its naissance, with many challenges to be overcome before practical applications can be developed. The work described herein will move main group catalysis towards industrial exploitation by applying well-established methodologies in organic chemistry to inorganic main group chemistry and subsequently industry (e.g. the pharmaceuticals sector). This unique opportunity for Dr Melen will allow her to build a team of highly skilled researchers which is of vital importance to her as an emerging leading academic.
现代社会高度依赖有机材料,例如在智能手机显示器等技术设备中,或者在治疗慢性疾病的药物中。然而,在英国和西方社会寻求提高生活水平的同时,发展中国家也在努力改善本国的技术和医疗保健。随着人口的增长和提高全球生活质量的必要性,对世界资源的需求将不断增加。这种情况,加上能源价格的上涨,可能会导致我们目前的生活水平下降,除非找到新的能源和低成本的工艺来满足不断扩大的全球需求。催化在维持全球日常生活质量方面发挥着关键作用,因为超过85%的化学产品是通过催化方法产生的。通过降低化学过程的能垒,催化剂可以指导反应的结果,既降低了能量消耗,又提高了化学过程的效率。因此,新催化剂的开发和催化性能的提高可以对许多重大的社会问题产生直接影响。过渡金属以其丰富的反应化学性质和高活性在这些工艺中占主导地位。然而,许多最活跃的催化剂通常是由所谓的“贵金属”组成的,顾名思义,由于它们的稀缺性,它们的价格昂贵。虽然这些催化剂通常效率很高,但一个主要的陷阱是它们固有的毒性。这对于进入人体的消费品(例如食品或药品)尤其重要,因为监管控制要求通过细致的反应后催化剂去除,将有毒金属的浓度降至十亿分之一的水平。Melen博士的研究旨在回答的一个问题是:金属催化剂能否完全被规避?在过去的40年里,等球体类比(霍夫曼因此获得诺贝尔化学奖)为无机化学的快速实验发展提供了理论基础。提出的工作将通过将合成有机化学应用于主要基团系统,应用等球形类比来产生新的两亲性催化剂。生成的化合物将在无金属催化加氢、二氧化碳封存和碳氢活化/硼化反应中进行测试。这些都是催化的一些最重要和最热门的领域。例如,在多种商业过程中,向不饱和底物添加分子氢在化学工业中是无与伦比的。同样,直接利用二氧化碳作为碳-1原料已被许多国家确定为需要探索和发展的领域。虽然二氧化碳是地球上生命的主要碳源,但它同时也是最重要的温室气体,隔绝二氧化碳的方法正变得越来越重要。这些过程将提供以可持续的方式制造燃料和有用化合物的新方法。主基团催化,即无金属催化,已经成为一个新兴的领域,Melen博士一直是其中的关键人物。然而,这一蓬勃发展的领域仍处于起步阶段,在开发实际应用之前需要克服许多挑战。本文所述的工作将通过将有机化学中成熟的方法应用于无机主基团化学和随后的工业(例如制药部门),将主基团催化推向工业开发。对于Melen博士来说,这个独特的机会将使她能够建立一个高技能的研究团队,这对她作为一名新兴的领先学者至关重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis and lewis acidity of fluorinated triaryl borates
氟化硼酸三芳基酯的合成和路易斯酸度
  • DOI:
    10.1039/d2dt04095f
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Alharbi M
  • 通讯作者:
    Alharbi M
Frustrated Radical Pairs: Insights from EPR Spectroscopy.
B(3,4,5-F3H2C6)3 Lewis acid-catalysed C3-allylation of indoles.
B(3,4,5-F3H2C6)3 路易斯酸催化的吲哚 C3-烯丙基化。
  • DOI:
    10.1039/d3dt00745f
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alotaibi N
  • 通讯作者:
    Alotaibi N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Melen其他文献

Rebecca Melen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Melen', 18)}}的其他基金

Expanding the Boundaries in Main Group Chemistry: New Boranes for Novel Reactivity
拓展主族化学的界限:具有新反应性的新硼烷
  • 批准号:
    EP/N02320X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Research Grant

相似海外基金

Mapping organic and inorganic chemistry with ageing in bone tissue
绘制有机和无机化学与骨组织老化的关系
  • 批准号:
    2775845
  • 财政年份:
    2022
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Studentship
Lewis Base Activation of Di- and Tetrahalodiboranes for Organic and Inorganic Chemistry
有机和无机化学中二硼烷和四卤二硼烷的路易斯碱活化
  • 批准号:
    396769488
  • 财政年份:
    2018
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Research Grants
Discovering new organic chemistry using an inorganic touch
利用无机接触发现新的有机化学
  • 批准号:
    FT160100007
  • 财政年份:
    2017
  • 资助金额:
    $ 108.14万
  • 项目类别:
    ARC Future Fellowships
SusChEM: Sustainable Chemistry from Combined Inorganic and Organic Waste Precursors
SusChEM:无机和有机废物前体相结合的可持续化学
  • 批准号:
    1708844
  • 财政年份:
    2017
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Continuing Grant
Creation of chemistry in organic-inorganic nanomatrix structure
有机-无机纳米基质结构的化学创造
  • 批准号:
    16H02291
  • 财政年份:
    2016
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Organic-inorganic hybrids via a combination of ring opening metathesis polymerisation, Thiol-Ene Click chemistry and Sol-Gel reactions
通过开环复分解聚合、硫醇-烯点击化学和溶胶-凝胶反应的组合形成有机-无机杂化物
  • 批准号:
    DP110104391
  • 财政年份:
    2011
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Discovery Projects
Multiphase Chemistry and Mass Transport in Submicron Mixed Inorganic and Organic Aerosol Particles
亚微米混合无机和有机气溶胶颗粒中的多相化学和传质
  • 批准号:
    1112414
  • 财政年份:
    2011
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Standard Grant
Connected Chemistry Curriculum: An Integrated Inorganic, Organic and Biological Chemistry Approach
互联化学课程:无机、有机和生物化学综合方法
  • 批准号:
    1043566
  • 财政年份:
    2011
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Standard Grant
Solid State Coordination Chemistry of Organic/Inorganic Hybrid Materials
有机/无机杂化材料的固态配位化学
  • 批准号:
    0907787
  • 财政年份:
    2009
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Standard Grant
500 MHz NMR Spectrometer to Support Organic, Bio-organic and Inorganic Chemistry
支持有机、生物有机和无机化学的 500 MHz NMR 波谱仪
  • 批准号:
    EP/D04779X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 108.14万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了