New Wire Additive Manufacturing (NEWAM)
新线材增材制造 (NEWAM)
基本信息
- 批准号:EP/R027218/1
- 负责人:
- 金额:$ 750.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
3D printing, or, Additive Manufacturing (AM), has rapidly come to prominence as a valid and convenient alternative to other production techniques, this is thanks to a growing body of evidence that its advantages in terms of lead-time reduction; design flexibility and capability; and reduced manufacturing waste are not only potential, but very much real. Metal AM techniques can be categorised based upon the form of the material they use (powder or wire), the heat source (laser, electron beam, or electric arc), or the way the material is delivered (pre-placed bed, or direct feed). Each of the metal AM technologies, given its particular properties, is best suited for specific applications. For example, the selective laser-melting of a pre-placed powder bed yields precise, net-shape components that can be very complex in design. However, their size is limited, cost is high, and build rates are low. In contrast, the Directed Energy Deposition (DED) processes can build near-net-shape parts, at many kilograms per hour, and with potentially no limitation to a components' size. To date, most of the work in wire based DED has been carried out at Cranfield University, where a 6-m-long aluminium aero-structure was built in a few days. Research over the last 10 years has also proven the capability to make large titanium parts in a timely manner (weeks instead of months) and with much reduced cost (up to 70% cheaper than machining from solid), resulting in a tremendous industry pull.However, manufacturing such components is extremely challenging; so far, it has been based on engineering principles; a great deal of empirical know-how is required for every new application, leading to long lead times and high cost for new applications and materials. These are ever-varying and numerous, in light of the heterogeneity of the end-users mix. Therefore, there is an urgent need to develop a science-based understanding of DED processing; this is key to exploit its full potential and enable the industrial pick-up it merits. Such potential could be increased by combining more than one process: E.g. an arc and a laser could be coupled into one symbiotic machine, generating a multiple energy source configuration.Our vision is to radically transform Large Area Metal Additive (LAMA) manufacturing, by pioneering:- new high build-rate wire based DED with greater precision of shape and microstructure- production of net-shape large-scale engineering structures, at low cost- guaranteed 'right-first-time' homogeneous or tailored high performance properties and structural integrity.Four universities (Cranfield U., U. of Manchester, Strathclyde U., and Coventry U.) have joined forces to deliver this ambitious research programme over five years with a budget of £7M. The LAMA programme is formed by four interconnected projects:1. LAMA's engine room. New wire-based DED processes with two primary aims: simultaneous high build rate with precision net-shape deposition (no finishing process required); and independent thermal control from deposition shape, using active thermal profile management.2. LAMA's design room: new wire compositions tailored to the newly available thermal process regimes, and capable of producing properties better than the equivalent forged alloys; it will also provide crucial information regarding the formation and criticality of defects.3. LAMA's modelling room: key fundamental science and understanding, using advanced process and material modelling and state-of-the-art high efficiency techniques. Physics-based thermal and fluid-flow models, as well as microstructural and mechanical models will be developed and implemented.4. LAMA's quality room: physics-based framework for guaranteed mechanical properties and structural integrity in as-built components; including the development of in-process non-destructive evaluation techniques.LAMA will build on and exploit the UK's substantial lead in wire-based DED technology.
3D打印或增材制造(AM)已迅速成为其他生产技术的有效和方便的替代品,这要归功于越来越多的证据表明,其在缩短交货期、设计灵活性和能力以及减少制造浪费方面的优势不仅是潜在的,而且是真实的。金属增材制造技术可以根据其使用的材料形式(粉末或线材)、热源(激光、电子束或电弧)或材料输送方式(预放置床或直接进料)进行分类。每种金属增材制造技术,鉴于其特定的性能,最适合于特定的应用。例如,预先放置的粉末床的选择性激光熔化产生精确的、净形状的部件,这些部件在设计上可能非常复杂。然而,它们的尺寸有限,成本高,构建率低。相比之下,定向能量沉积(DED)工艺可以以每小时许多公斤的速度制造近净形零件,并且可能对部件的尺寸没有限制。迄今为止,大部分基于线的DED的工作已经在克兰菲尔德大学进行,在那里,一个6米长的铝航空结构在几天内建成。过去10年的研究也证明了及时制造大型钛部件的能力(数周而不是数月),成本大大降低(比固体加工便宜70%),对行业产生了巨大的拉动作用。然而,制造此类部件极具挑战性;迄今为止,它一直基于工程原理;每一种新的应用都需要大量的经验性专门知识,导致新的应用和材料的研制周期长,成本高。鉴于最终用户的多样性,这些服务不断变化,数量众多。因此,迫切需要对DED处理进行科学的理解;这是充分发挥其潜力并实现其优点的工业拾取的关键。这种潜力可以通过组合多个工艺来提高:例如,电弧和激光可以耦合到一个共生机器中,产生多能源配置。我们的愿景是从根本上改变大面积金属增材(LAMA)制造,通过开创:- 具有更高形状和微观结构精度的新型高造坯率线基DED-生产净形大型工程结构,以低成本保证“首次正确”的均匀或定制的高性能特性和结构完整性。四所大学(克兰菲尔德大学,联合曼彻斯特斯特拉斯克莱德大学和考文垂大学)已联手在五年内以700万英镑的预算实施这一雄心勃勃的研究计划。LAMA方案由四个相互关联的项目组成:1. LAMA的引擎室。新的基于线的DED工艺有两个主要目标:同时具有高构建速率和精确的净形状沉积(不需要精加工工艺);以及使用主动热分布管理的独立于沉积形状的热控制。LAMA设计室:根据新的热处理制度定制的新线材成分,能够产生比同等锻造合金更好的性能;它还将提供关于缺陷形成和临界性的关键信息。LAMA的模型室:关键的基础科学和理解,使用先进的工艺和材料建模以及最先进的高效率技术。将开发和实施基于物理的热和流体流动模型以及微观结构和力学模型。LAMA优质客房:基于物理的框架,保证机械性能和结构完整性的建成组件;包括在过程中的无损评估技术的发展。LAMA将建立和利用英国在基于线的DED技术的实质性领先地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing
- DOI:10.3390/met13081334
- 发表时间:2023-07
- 期刊:
- 影响因子:2.9
- 作者:João B. Bento;Chong Wang;J. Ding;S. Williams
- 通讯作者:João B. Bento;Chong Wang;J. Ding;S. Williams
Numerical study of rolling process on the plastic strain distribution in wire + arc additive manufactured Ti-6Al-4V
滚丝工艺对电弧增材制造Ti-6Al-4V塑性应变分布的数值研究
- DOI:10.1063/1.5112695
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Abbaszadeh M
- 通讯作者:Abbaszadeh M
Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures
- DOI:10.1007/s11665-019-04249-y
- 发表时间:2019-08
- 期刊:
- 影响因子:2.3
- 作者:Masoud Abbaszadeh;J. Hönnige;F. Martina;L. Neto;N. Kashaev;P. Colegrove;Stewart W. Williams;B. Klusemann
- 通讯作者:Masoud Abbaszadeh;J. Hönnige;F. Martina;L. Neto;N. Kashaev;P. Colegrove;Stewart W. Williams;B. Klusemann
In-process optical monitoring of contamination in an additively manufactured titanium alloy
- DOI:10.1117/12.2666339
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Nina Binaei;J. Hodgkinson;K. Mullaney;E. Chehura;Stewart Williams;R. Tatam
- 通讯作者:Nina Binaei;J. Hodgkinson;K. Mullaney;E. Chehura;Stewart Williams;R. Tatam
Additive manufacture of large structures: Robotic or CNC systems?
大型结构的增材制造:机器人还是数控系统?
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bandari Y.K.
- 通讯作者:Bandari Y.K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stewart Williams其他文献
Preliminary Investigation of Building Strategies of Maraging Steel Bulk Material Using Wire + Arc Additive Manufacture
- DOI:
10.1007/s11665-018-3521-5 - 发表时间:
2018-07-17 - 期刊:
- 影响因子:2.000
- 作者:
Xiangfang Xu;Jialuo Ding;Supriyo Ganguly;Chenglei Diao;Stewart Williams - 通讯作者:
Stewart Williams
On the composition gradient of steel/Invar functionally graded material manufactured by wire-based direct energy deposition
- DOI:
10.1016/j.addma.2024.104594 - 发表时间:
2024-09-25 - 期刊:
- 影响因子:
- 作者:
Jun Wang;Romali Biswal;Guangyu Chen;Goncalo Rodrigues Pardal;Yao Lu;Jialuo Ding;Stewart Williams - 通讯作者:
Stewart Williams
Situating drugs and drug use geographically: From place to space and back again.
从地理上定位毒品和毒品使用:从一个地方到另一个空间,然后再返回。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Stewart Williams - 通讯作者:
Stewart Williams
Development of a phased array ultrasound roller probe for inspection of wire + arc additive manufactured components
用于检测电弧增材制造部件的相控阵超声滚轮探头的开发
- DOI:
10.1016/j.jmapro.2022.06.045 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:6.800
- 作者:
Randika K.W. Vithanage;Ehsan Mohseni;David Lines;Charalampos Loukas;Euan Foster;Charles N. MacLeod;S. Gareth Pierce;Anthony Gachagan;Jialuo Ding;Stewart Williams - 通讯作者:
Stewart Williams
Strain controlled fatigue behaviour of a wire + arc additive manufactured Ti-6Al-4V
线材+电弧增材制造 Ti-6Al-4V 的应变控制疲劳行为
- DOI:
10.1016/j.ijfatigue.2023.107579 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:6.800
- 作者:
Abdul Khadar Syed;Rob Plaskitt;Michelle Hill;Zsolt Pinter;Jialuo Ding;Robert Zboray;Stewart Williams;Xiang Zhang - 通讯作者:
Xiang Zhang
Stewart Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stewart Williams', 18)}}的其他基金
Sustainable Additive Manufacturing
可持续增材制造
- 批准号:
EP/W01906X/1 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Research Grant
Robotic Wire + Arc Additive Manufacuture
机器人电弧增材制造
- 批准号:
EP/P031064/1 - 财政年份:2017
- 资助金额:
$ 750.02万 - 项目类别:
Research Grant
High Deposition Rate Additive Manufacture of Complex Metal Parts (HiDepAM)
复杂金属零件的高沉积速率增材制造 (HiDepAM)
- 批准号:
EP/K029010/1 - 财政年份:2014
- 资助金额:
$ 750.02万 - 项目类别:
Research Grant
High Efficency Laser Processing Systems (HELPS)
高效激光加工系统(帮助)
- 批准号:
TS/G001553/1 - 财政年份:2008
- 资助金额:
$ 750.02万 - 项目类别:
Research Grant
相似国自然基金
基于Arcing wire PAW的铝锂合金异质三丝合金化增材制造机理与控制
- 批准号:52305431
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Synchronous wire-powder feeding solution for plasma arc additive manufacturing of Ti2AlNb alloys
用于 Ti2AlNb 合金等离子弧增材制造的同步送丝解决方案
- 批准号:
24K17185 - 财政年份:2024
- 资助金额:
$ 750.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clarification of the aluminum alloy deposition mechanism under the electromagnetic circumstance in alternate current pulsed gas metal arc process applied wire arc additive manufacturing (WAAM)
阐明交流脉冲气体金属电弧工艺应用电弧增材制造(WAAM)电磁环境下铝合金沉积机理
- 批准号:
24K17530 - 财政年份:2024
- 资助金额:
$ 750.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of the Conform Process to Recycle Titanium Alloy Swarf into Wire for Sustainable Additive Manufacturing Feedstock
开发将钛合金切屑回收为可持续增材制造原料线材的 Conform 工艺
- 批准号:
2879603 - 财政年份:2023
- 资助金额:
$ 750.02万 - 项目类别:
Studentship
Additive Manufacturing of Large Functional Parts Using Wire Directed Energy Deposition (DED)
使用线定向能量沉积 (DED) 增材制造大型功能部件
- 批准号:
571100-2021 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Applied Research and Development Grants - Level 2
Multi-material robotic hybrid additive wire arc manufacturing for the energy industry
适用于能源行业的多材料机器人混合增材电弧制造
- 批准号:
577080-2022 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Alliance Grants
Simulative prediction of the manufacturing process in wire-arc additive manufacturing (WAAM) (T03#)
电弧增材制造 (WAAM) 制造过程的模拟预测 (T03
- 批准号:
470693600 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Collaborative Research Centres (Transfer Project)
CAREER: Wire Arc Additive Manufacturing of Molybdenum Alloys for High-temperature Applications: Residual Stresses and Porosity Considering Ductile-to-brittle Transition Temperature
职业:用于高温应用的钼合金的电弧增材制造:考虑延性到脆性转变温度的残余应力和孔隙率
- 批准号:
2141905 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Standard Grant
Development of a commercial Wire and Laser Additive Manufacture process - Wi-LAM
商业线材和激光增材制造工艺的开发 - Wi-LAM
- 批准号:
10045020 - 财政年份:2022
- 资助金额:
$ 750.02万 - 项目类别:
Grant for R&D
CAREER: Ultrasonically Assisted Wire Arc Additive Manufacturing of Metal Matrix Nanocomposites for High-strength, Lightweight Structures
职业:用于高强度、轻质结构的金属基纳米复合材料的超声波辅助电弧增材制造
- 批准号:
2044526 - 财政年份:2021
- 资助金额:
$ 750.02万 - 项目类别:
Standard Grant
Development of materials characterization methodologies for novel biomedical alloys in wire-feed additive manufacturing
开发送丝增材制造中新型生物医用合金的材料表征方法
- 批准号:
534298-2019 - 财政年份:2021
- 资助金额:
$ 750.02万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




