PDE Boundary Control for Active Flutter Prevention Using Finite Dimensional Input-Output Maps
使用有限维输入输出图进行主动颤振预防的偏微分方程边界控制
基本信息
- 批准号:EP/R032548/1
- 负责人:
- 金额:$ 25.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flutter is a well-studied phenomenon in aircraft wings, and typically affects wings at high flight speeds. Traditionally, aircraft designers sought to avoid flutter altogether; if it was encountered at all during advanced design stages or flight testing, it was dealt with using design fixes and/or inefficient operational modifications. The importance of active flutter mitigation has increased as the wings have become lighter and consequently more flexible over the years. A recent example of active flutter mitigation, which is also commercially deployed, is the outboard aileron modal suppression (OAMS) system incorporated on the Boeing 747-8I. While the details of OAMS are unknown, the phrase "modal suppression" suggests that its design falls within the ambit of traditional wing control methods which use a finite dimensional approximation of the dynamics to design a stabilizing controller. Although this approach allows a designer to tap into the vast family of control techniques for systems described by ordinary differential equations (ODEs), it has three major drawbacks: the ODE approximations tend to have large orders, the states of the ODE are seldom physically meaningful, and the control design process is susceptible to spillover instabilities which can result from an improper modal approximation.Control techniques for systems described by partial differential equation (PDEs), and which avoid finite dimensional approximations, have been evolving steadily in the recent past and promise to do away with both aforementioned drawbacks. The prior work done by the PI led to two new adaptive control techniques that fall within this evolving family of techniques.One of the techniques developed by the PI uses finite dimensional input-output (FDIO) maps that arise naturally for specific input-output pairs for a given PDE. Using FDIO maps, it is possible to convert the control design problem exactly to one for ODEs. Although akin to the risky approach of designing a static output feedback controller in finite dimensional systems, the PI discovered that the structure of the PDE provides a means for expanding the stable envelope of the system even under static output feedback. The PI's work also provided a partial explanation for the underlying stabilization mechanism. The aim of the present project is to develop and demonstrate a low-order adaptive control design technique for flexible wings which exploits the underlying PDE structure of the dynamics effectively, together with a clever reformulation of the control problem. The controller would be based on the PI's prior work [1, 6]. We will provide a major extension of the technique to more realistic, 2-dof wing models and adaptive laws to help the controller deal with modeling and parametric uncertainties. This is key to ensuring practical applicability of the control technique, and requires non-trivial theoretical development as well. We will validate the control technique using wind tunnel testing. The outcome of this project would be a low-order adaptive controller accompanied by analytical performance and stability guarantees. Additionally, the control design would minimize the set of sensors required for the feedback laws, by avoiding ODE approximations as far as possible during the design process.Beneficiaries of this research include the academic community and the aircraft industry, notably those that are involved in developing and deploying aeroelastic solutions. The broader impact of the proposed research has been described elsewhere in the proposal.
颤振是飞机机翼中的一种被充分研究的现象,并且通常在高飞行速度下影响机翼。传统上,飞机设计师试图完全避免颤振;如果在高级设计阶段或飞行试验中遇到颤振,则使用设计修复和/或低效的操作修改来处理。近年来,随着机翼变得更轻,因而更灵活,主动颤振缓解的重要性也随之增加。主动颤振抑制的一个最近的例子是波音747-8I飞机上安装的外侧副翼模态抑制(OAMS)系统。虽然OAMS的细节是未知的,但“模态抑制”一词表明,它的设计福尔斯传统机翼控制方法的范围,传统机翼控制方法使用动力学的有限维近似来设计稳定控制器。虽然这种方法允许设计人员利用由常微分方程(ODE)描述的系统的大量控制技术,但它有三个主要缺点:常微分方程近似往往具有大的阶数,常微分方程的状态很少有物理意义,并且控制设计过程易受溢出不稳定性的影响,溢出不稳定性可由不适当的模态近似引起。通过偏微分方程(PDE),并且避免有限维近似,在最近的过去已经稳定地发展,并且承诺消除上述两个缺点。PI先前所做的工作导致了两种新的自适应控制技术,它们属于这一不断发展的技术家族。PI开发的技术之一使用有限维输入输出(FDIO)映射,该映射对于给定PDE的特定输入输出对自然产生。使用FDIO映射,可以将控制设计问题精确地转换为常微分方程的问题。虽然类似于在有限维系统中设计静态输出反馈控制器的冒险方法,PI发现PDE的结构提供了一种即使在静态输出反馈下也能扩展系统稳定包络的方法。PI的工作也为潜在的稳定机制提供了部分解释。本项目的目的是开发和演示一个低阶自适应控制设计技术的柔性机翼,有效地利用潜在的PDE结构的动态,连同一个聪明的重新制定的控制问题。控制器将基于PI的先前工作[1,6]。我们将提供一个主要的技术扩展到更现实的,2自由度机翼模型和自适应法律,以帮助控制器处理建模和参数的不确定性。这是确保控制技术的实际适用性的关键,也需要非平凡的理论发展。我们将使用风洞试验来验证控制技术。该项目的成果将是一个低阶自适应控制器,伴随着分析性能和稳定性保证。此外,通过在设计过程中尽可能地避免ODE近似,控制设计将使反馈律所需的传感器组最小化。这项研究的受益者包括学术界和飞机工业,特别是那些参与开发和部署气动弹性解决方案的人。拟议研究的更广泛影响已在提案的其他地方描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aditya Paranjape其他文献
Aditya Paranjape的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Elucidation of the influence of twin boundary on Jc of REBCO coated conductors using twin boundary control method
使用孪晶界控制方法阐明孪晶界对 REBCO 涂层导体 Jc 的影响
- 批准号:
23K03929 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control for boundary segments of martensite structure for retarding hydrogen embrittlement
控制马氏体结构边界段以延缓氢脆
- 批准号:
23H01717 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A conserved control module for cleft-like tissue boundary formation in the vertebrate embryo
脊椎动物胚胎中裂隙样组织边界形成的保守控制模块
- 批准号:
RGPIN-2017-06667 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Boundary Control Towards Smart Water Management Systems
职业:智能水管理系统的边界控制
- 批准号:
2302030 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Synchronization control of hyperbolic equations with van der Pol boundary condition and its application to secure communication systems
范德波尔边界条件双曲方程同步控制及其在安全通信系统中的应用
- 批准号:
21K03370 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wide-ranged turbulent flow control using singular pulsations appearing in the gas-liquid multiphase turbulent boundary layer
利用气液多相湍流边界层中出现的奇异脉动进行宽范围湍流控制
- 批准号:
21K14069 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Control of grain boundary segregation in ferrous alloys using interaction between solute elements
利用溶质元素之间的相互作用控制铁合金中的晶界偏析
- 批准号:
21K14433 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A conserved control module for cleft-like tissue boundary formation in the vertebrate embryo
脊椎动物胚胎中裂隙样组织边界形成的保守控制模块
- 批准号:
RGPIN-2017-06667 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Discovery Grants Program - Individual
Smart control of gas-liquid two-phase turbulent boundary layers for frictional drag reduction
智能控制气液两相湍流边界层以减少摩擦阻力
- 批准号:
21H04538 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: How fast do tidewater glaciers melt? Quantifying the processes that control boundary layer transport across the ice-ocean interface
合作研究:潮水冰川融化的速度有多快?
- 批准号:
2023319 - 财政年份:2020
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant