ReEnTrust: Rebuilding and Enhancing Trust in Algorithms

ReEnTrust:重建和增强算法信任

基本信息

  • 批准号:
    EP/R033633/1
  • 负责人:
  • 金额:
    $ 126.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

As interaction on online Web-based platforms is becoming an essential part of people's everyday lives and data-driven AI algorithms are starting to exert a massive influence on society, we are experiencing significant tensions in user perspectives regarding how these algorithms are used on the Web. These tensions result in a breakdown of trust: users do not know when to trust the outcomes of algorithmic processes and, consequently, the platforms that use them. As trust is a key component of the Digital Economy where algorithmic decisions affect citizens' everyday lives, this is a significant issue that requires addressing. ReEnTrust explores new technological opportunities for platforms to regain user trust and aims to identify how this may be achieved in ways that are user-driven and responsible. Focusing on AI algorithms and large scale platforms used by the general public, our research questions include: What are user expectations and requirements regarding the rebuilding of trust in algorithmic systems, once that trust has been lost? Is it possible to create technological solutions that rebuild trust by embedding values in recommendation, prediction, and information filtering algorithms and allowing for a productive debate on algorithm design between all stakeholders? To what extent can user trust be regained through technological solutions and what further trust rebuilding mechanisms might be necessary and appropriate, including policy, regulation, and education? The project will develop an experimental online tool that allows users to evaluate and critique algorithms used by online platforms, and to engage in dialogue and collective reflection with all relevant stakeholders in order to jointly recover from algorithmic behaviour that has caused loss of trust. For this purpose, we will develop novel, advanced AI-driven mediation support techniques that allow all parties to explain their views, and suggest possible compromise solutions. Extensive engagement with users, stakeholders, and platform service providers in the process of developing this online tool will result in an improved understanding of what makes AI algorithms trustable. We will also develop policy recommendations and requirements for technological solutions plus assessment criteria for the inclusion of trust relationships in the development of algorithmically mediated systems and a methodology for deriving a "trust index" for online platforms that allows users to assess the trustability of platforms easily. The project is led by the University of Oxford in collaboration with the Universities of Edinburgh and Nottingham. Edinburgh develops novel computational techniques to evaluate and critique the values embedded in algorithms, and a prototypical AI-supported platform that enables users to exchange opinions regarding algorithm failures and to jointly agree on how to "fix" the algorithms in question to rebuild trust. The Oxford and Nottingham teams develop methodologies that support the user-centred and responsible development of these tools. This involves studying the processes of trust breakdown and rebuilding in online platforms, and developing a Responsible Research and Innovation approach to understanding trustability and trust rebuilding in practice. A carefully selected set of industrial and other non-academic partners ensures ReEnTrust work is grounded in real-world examples and experiences, and that it embeds balanced, fair representation of all stakeholder groups.ReEnTrust will advance the state of the art in terms of trust rebuilding technologies for algorithm-driven online platforms by developing the first AI-supported mediation and conflict resolution techniques and a comprehensive user-centred design and Responsible Research and Innovation framework that will promote a shared responsibility approach to the use of algorithms in society, thereby contributing to a flourishing Digital Economy.
随着基于网络的在线平台上的互动正在成为人们日常生活的重要组成部分,数据驱动的人工智能算法开始对社会产生巨大影响,我们正在经历用户对这些算法如何在网络上使用的观点的重大紧张局势。这些紧张关系导致了信任的崩溃:用户不知道何时信任算法过程的结果,因此也不知道使用它们的平台。由于信任是数字经济的关键组成部分,算法决策影响公民的日常生活,这是一个需要解决的重要问题。ReEnTrust探索平台重新获得用户信任的新技术机会,并旨在确定如何以用户驱动和负责任的方式实现这一目标。专注于AI算法和公众使用的大规模平台,我们的研究问题包括:一旦失去信任,用户对算法系统重建信任的期望和要求是什么?是否有可能创建技术解决方案,通过在推荐、预测和信息过滤算法中嵌入价值,并允许所有利益相关者之间就算法设计进行富有成效的辩论,来重建信任?在多大程度上可以通过技术解决方案重新获得用户信任,哪些进一步的信任重建机制可能是必要和适当的,包括政策,监管和教育?该项目将开发一个实验性的在线工具,使用户能够评估和批评在线平台使用的算法,并与所有相关利益攸关方进行对话和集体反思,以便共同从导致失去信任的算法行为中恢复过来。为此,我们将开发新的、先进的人工智能驱动的调解支持技术,允许各方解释他们的观点,并提出可能的妥协解决方案。在开发这个在线工具的过程中,与用户、利益相关者和平台服务提供商的广泛接触将有助于更好地理解是什么使人工智能算法值得信赖。我们还将制定技术解决方案的政策建议和要求,以及在开发算法中介系统时纳入信任关系的评估标准,以及为在线平台得出“信任指数”的方法,使用户能够轻松评估平台的可信度。该项目由牛津大学牵头,爱丁堡大学和诺丁汉大学合作。爱丁堡开发了新的计算技术来评估和批判算法中嵌入的价值,以及一个原型AI支持的平台,使用户能够就算法故障交换意见,并就如何“修复”有问题的算法以重建信任达成一致。牛津大学和诺丁汉大学的团队开发了支持以用户为中心和负责任地开发这些工具的方法。这涉及研究在线平台中信任崩溃和重建的过程,并制定负责任的研究和创新方法,以了解实践中的信任和信任重建。一组精心挑选的工业和其他非学术合作伙伴确保ReEnTrust的工作立足于现实世界的例子和经验,并嵌入平衡,公平代表所有利益相关者群体。ReEnTrust将通过开发第一个人工智能支持的调解和冲突解决技术以及一个全面的用户-以设计为中心的负责任的研究和创新框架,将促进在社会中使用算法的共同责任方法,从而促进繁荣的数字经济。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Societal Challenges in the Smart Society
智能社会的社会挑战
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mario Arias Oliva;Jorge Pelegrn Borondo;Kiyoshi Murata and Ana Maria Lara Palma (eds)
  • 通讯作者:
    Kiyoshi Murata and Ana Maria Lara Palma (eds)
"It's your private information. it's your life."
“这是你的私人信息。这是你的生活。”
  • DOI:
    10.1145/3392063.3394410
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dowthwaite L
  • 通讯作者:
    Dowthwaite L
Social Contracts for Non-Cooperative Games
An Exploration of how Trust Online Relates to Psychological and Subjective Wellbeing
" They don't really listen to people" Young people's concerns and recommendations for improving online experiences
“他们并没有真正倾听人们的声音”年轻人对改善在线体验的担忧和建议
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marina Denise Anne Jirotka其他文献

Marina Denise Anne Jirotka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marina Denise Anne Jirotka', 18)}}的其他基金

RoboTIPS: Developing Responsible Robots for the Digital Economy
RoboTIPS:为数字经济开发负责任的机器人
  • 批准号:
    EP/S005099/1
  • 财政年份:
    2019
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Fellowship
Digital Wildfire: (Mis)information flows, propagation and responsible governance
数字野火:(错误)信息流动、传播和负责任的治理
  • 批准号:
    ES/L013398/1
  • 财政年份:
    2014
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant
Framework for Responsible Research and Innovation in ICT
信息通信技术负责任的研究和创新框架
  • 批准号:
    EP/J000019/1
  • 财政年份:
    2011
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant
Research Cluster on Innovative Media for a Digital Economy
数字经济创新媒体研究集群
  • 批准号:
    EP/G001979/1
  • 财政年份:
    2008
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant
Embedding e-Science Applications - Designing and Managing for Usability
嵌入电子科学应用程序 - 可用性设计和管理
  • 批准号:
    EP/D049733/1
  • 财政年份:
    2006
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant

相似海外基金

Rebuilding Emotional Stability and Strength Through Therapeutic and Life-Skills Education for Internally Displaced Persons in Nigeria (RESETTLE-IDPs): A Hybrid Type II effectiveness-implementation study
通过尼日利亚境内流离失所者的治疗和生活技能教育重建情绪稳定性和力量 (RESETTLE-IDP):一项混合 II 类有效性实施研究
  • 批准号:
    494108
  • 财政年份:
    2023
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Operating Grants
Rebuilding Semantic Studies: Toward a New Science of Meaning
重建语义研究:迈向新的意义科学
  • 批准号:
    23H00562
  • 财政年份:
    2023
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative International Research on Rebuilding the Lives of Survivors of Conflict Related Sexual Violence in Post-Conflict Settings
关于在冲突后环境中重建冲突相关性暴力幸存者生活的比较国际研究
  • 批准号:
    23K11692
  • 财政年份:
    2023
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Rebuilding the Virtual Memory Abstraction Across Hardware and Operating Systems
职业:跨硬件和操作系统重建虚拟内存抽象
  • 批准号:
    2239311
  • 财政年份:
    2023
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Continuing Grant
REbuilding a sense of PLACE (REPLACE): The socio-cultural role of 3D technologies in increasing community resilience after natural disasters.
重建地方感(REPLACE):3D 技术在提高自然灾害后社区复原力方面的社会文化作用。
  • 批准号:
    MR/W009153/1
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Fellowship
Rebuilding Care in a Post-Pandemic World
在大流行后的世界中重建护理
  • 批准号:
    2215780
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Standard Grant
Rehabilitating Probation: Rebuilding culture, identity and legitimacy in a reformed public service
缓刑恢复:在改革后的公共服务中重建文化、身份和合法性
  • 批准号:
    ES/W001101/1
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant
Rebuilding International Organizations Theory: International Peace through Balance of Power and Functional Cooperation
重建国际组织理论:通过力量平衡和职能合作实现国际和平
  • 批准号:
    22K01366
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
WHO CARES? REBUILDING CARE IN A POST-PANDEMIC WORLD
谁在乎?
  • 批准号:
    ES/X00130X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Research Grant
CIVIC-PG Track B: Reducing disparities in drinking water access by rebuilding consumer confidence in municipal tap water
CIVIC-PG 轨道 B:通过重建消费者对市政自来水的信心来减少饮用水获取方面的差异
  • 批准号:
    2228457
  • 财政年份:
    2022
  • 资助金额:
    $ 126.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了