Levitated Electromechanics: All-Electrical Nanoscale Control and Cooling (LEVELECTRO)

悬浮机电:全电气纳米级控制和冷却 (LEVELECTRO)

基本信息

  • 批准号:
    EP/S004777/1
  • 负责人:
  • 金额:
    $ 49.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

**The research in context**Technology is continuously miniaturizing, and as it reaches the nanoscale we face unique challenges. How do we control such small objects? What happens when temperature fluctuations have the same energy scale as our devices? From the other direction, advances in the quantum physics of a few atoms, ions, and solid-state qubits mean that we increasingly wish to scale up quantum systems, or interface them with nanoscale technology.Nano- and micro-mechanical devices have been controlled at the quantum level in recent years, an amazing advance allowing even entanglement between light and mechanical motion. However, all such small systems are limited by unavoidable environmental effects, such as thermal contact with the surroundings and energy dissipation through strain. This limits the participation of mechanical devices in both classical and quantum technologies.By using a levitated nanoparticle as the mechanical device, these problems are overcome. LEVELECTRO will pioneer the integration of levitated nano-objects with electronic circuits, allowing electrical cooling and networking. This ultra-low dissipation system offers exquisite force sensitivity. LEVELECTRO will explore new regimes of physics, by working in extreme vacuum, elucidating thermodynamics on the nanoscale. This unique research will enable levitated nano-objects to participate in quantum technologies as long-lived quantum storage devices, and as high-fidelity transducers between optical and electronic quantum signals.**Aims and Applications***Aim 1 - All-electrical nanoparticle control platform: LEVELECTRO introduces a new platform, where a levitated nanoparticle is coupled to an electrical circuit, founding the field levitated electromechanics (LE). LE will allow fully electronic control and cooling of the motion of nanoparticles, avoiding the detrimental scattering and absorption encountered in optical levitation. Electrical cooling removes thermal energy which masks the sensitivity of the levitated particles to their environment, hence cooling boosts the ability for the LE platform to behave as a sensor.*Aim 2 - Ultra-low dissipation networked device: Nanoparticles levitated in vacuum are predicted to have the highest mechanical quality factor of any mechanical object. Such a levitated nanoparticle acts like a little pendulum clock, and in principle if you give it a kick it would take months for it to ring-down. Such behaviour hasn't been realised in optical systems, due to the instability of nanoparticles in optical traps at low pressures, and the fact that the fundamental noise on the light field leads to some additional damping. The LE system doesn't suffer from these limitations. The potential to provide an electrically networked, ultra-high quality factor oscillator, promises to challenge quartz crystal oscillator technology, which is ubiquitous in communications, navigation, and signal processing, and enable the detection of tiny forces. *Aim 3 - Ultra-low dissipation quantum device: LEVELECTRO will explore Levitated Cavity Quantum Electromechanics (LCQE) theory, where a levitated charged particle is coupled to quantum microwave cavities. Regular cavity quantum electromechanical systems are at the forefront of quantum technologies, but are limited by a loss of energy (dissipation) from the mechanical element to the environment. LCQE overcomes this problem, promising ultra-low dissipation operation, deep quantum cooling, and the storage of quantum information for tens of seconds. It is also possible to combine the LCQE system with a levitated cavity quantum optomechanical one, enable the conversion of quantum states of light, to quantum electrical signals. One can foresee the conversion of freely propagating quantum states of light into highly accessible and controllable quantum electrical signals, a much-needed quantum transducer acting as a node in a quantum information network.
** 背景下的研究 ** 技术不断发展,当它达到纳米级时,我们面临着独特的挑战。我们如何控制如此小的物体?当温度波动与我们的设备具有相同的能量尺度时会发生什么?从另一个方向来看,在一些原子、离子和固态量子比特的量子物理学方面的进展意味着我们越来越希望将量子系统按比例放大,或者将它们与纳米级技术相结合。近年来,纳米和微机械设备已经在量子水平上得到控制,这是一个惊人的进步,甚至允许光和机械运动之间的纠缠。然而,所有这些小型系统都受到不可避免的环境影响的限制,例如与周围环境的热接触和通过应变的能量耗散。这就限制了机械器件在经典和量子技术中的应用,而采用悬浮纳米粒子作为机械器件,则克服了这些问题。LEVELECTRO将率先将悬浮纳米物体与电子电路集成,从而实现电气冷却和联网。这种超低耗散系统提供了精致的力灵敏度。LEVELECTRO将通过在极端真空中工作来探索新的物理机制,阐明纳米尺度上的热力学。这项独特的研究将使悬浮的纳米物体能够作为长寿命的量子存储设备参与量子技术,并作为光学和电子量子信号之间的高保真换能器。目标和应用 * 目标1 -全电纳米粒子控制平台:LEVELELECTRO引入了一个新的平台,其中悬浮的纳米粒子耦合到电路,建立场悬浮机电(LE)。LE将允许完全电子控制和冷却纳米粒子的运动,避免光学悬浮中遇到的有害散射和吸收。电冷却去除了热能,从而掩盖了悬浮颗粒对环境的敏感性,因此冷却提高了LE平台作为传感器的能力。*目标2 -超低耗散网络设备:悬浮在真空中的纳米颗粒预计具有任何机械物体的最高机械品质因数。这样一个悬浮的纳米粒子就像一个小摆钟,原则上,如果你踢它一下,它需要几个月的时间才能结束。这种行为在光学系统中还没有实现,这是由于在低压下光阱中纳米颗粒的不稳定性,以及光场上的基本噪声导致一些额外阻尼的事实。LE系统不受这些限制的影响。提供电气联网的超高品质因数振荡器的潜力有望挑战石英晶体振荡器技术,石英晶体振荡器技术在通信、导航和信号处理中无处不在,并且能够检测微小的力。* 目标3 -超低耗散量子器件:LEVELECTRO将探索悬浮腔量子机电(LCQE)理论,其中悬浮的带电粒子耦合到量子微波腔。规则腔量子机电系统处于量子技术的最前沿,但受到从机械元件到环境的能量损失(耗散)的限制。LCQE克服了这个问题,有望实现超低耗散操作、深度量子冷却和数十秒的量子信息存储。也可以将LCQE系统与悬浮腔量子光机械系统联合收割机组合,使得能够将光的量子态转换为量子电信号。人们可以预见,自由传播的光量子态将转换为高度可访问和可控的量子电信号,这是一个急需的量子换能器,充当量子信息网络中的节点。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum sensing with nanoparticles for gravimetry: when bigger is better
  • DOI:
    10.1515/aot-2020-0019
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Markus Rademacher;J. Millen;Y. Li
  • 通讯作者:
    Markus Rademacher;J. Millen;Y. Li
Event-based imaging of levitated microparticles
  • DOI:
    10.1063/5.0106111
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Yugang Ren;Enrique Benedetto;Harry Borrill;Yelizaveta Savchuk;Molly Message;Kate O'Flynn;Muddassar Rashid;J. Millen
  • 通讯作者:
    Yugang Ren;Enrique Benedetto;Harry Borrill;Yelizaveta Savchuk;Molly Message;Kate O'Flynn;Muddassar Rashid;J. Millen
Quantum electromechanics with levitated nanoparticles
  • DOI:
    10.1038/s41534-020-00333-7
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Lukas Martinetz;K. Hornberger;J. Millen;M. Kim;B. Stickler
  • 通讯作者:
    Lukas Martinetz;K. Hornberger;J. Millen;M. Kim;B. Stickler
Quantum experiments with microscale particles
  • DOI:
    10.1080/00107514.2020.1854497
  • 发表时间:
    2020-12-12
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Millen, James;Stickler, Benjamin A.
  • 通讯作者:
    Stickler, Benjamin A.
Levitated electromechanics: all-electrical cooling of charged nano- and micro-particles
  • DOI:
    10.1088/2058-9565/aaf5f3
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Goldwater, Daniel;Stickler, Benjamin A.;Millen, James
  • 通讯作者:
    Millen, James
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Millen其他文献

James Millen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Millen', 18)}}的其他基金

LeviNet - Levitation Network for Advanced Quantum Technologies
LeviNet - 先进量子技术的悬浮网络
  • 批准号:
    EP/W02683X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Research Grant

相似海外基金

Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
  • 批准号:
    10677295
  • 财政年份:
    2023
  • 资助金额:
    $ 49.44万
  • 项目类别:
Optical Mapping of Electromechanics of the Stomach
胃机电光学测绘
  • 批准号:
    10307603
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
Optical Mapping of Electromechanics of the Stomach
胃机电光学测绘
  • 批准号:
    10524060
  • 财政年份:
    2020
  • 资助金额:
    $ 49.44万
  • 项目类别:
Optical Mapping of Cardiac Electromechanics in the In Vivo Setting
体内心脏机电的光学测绘
  • 批准号:
    9912834
  • 财政年份:
    2019
  • 资助金额:
    $ 49.44万
  • 项目类别:
Optical Mapping of Electromechanics of the Stomach
胃机电光学测绘
  • 批准号:
    10007967
  • 财政年份:
    2019
  • 资助金额:
    $ 49.44万
  • 项目类别:
Levitated Electromechanics
悬浮机电
  • 批准号:
    2125378
  • 财政年份:
    2018
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Studentship
In situ Mechanics and Electromechanics of Nanostructures for Energy Efficient Advanced Materials
节能先进材料纳米结构的原位力学和机电学
  • 批准号:
    435811-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
Electromechanics of Bioinspired Switchable-Surface Nanocomposites
仿生可转换表面纳米复合材料的机电
  • 批准号:
    1662288
  • 财政年份:
    2017
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Standard Grant
In situ Mechanics and Electromechanics of Nanostructures for Energy Efficient Advanced Materials
节能先进材料纳米结构的原位力学和机电学
  • 批准号:
    435811-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
In situ Mechanics and Electromechanics of Nanostructures for Energy Efficient Advanced Materials
节能先进材料纳米结构的原位力学和机电学
  • 批准号:
    435811-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 49.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了