New Technologies for Efficient Wireless Power Transfer at Distance
远距离高效无线电力传输新技术
基本信息
- 批准号:EP/S007954/1
- 负责人:
- 金额:$ 111.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to transmit high power wirelessly over long distances is a potential game changer. In this project we are ambitiously investigating the area of medium power (200 W) medium distance (25 m) microwave wireless power transmission (WPT). Current research on microwave WPT tends to focus on low power "scavenging" techniques, with power levels of < 1mW. This can be useful for applications such as low power sensors, but is unlikely to be disruptive for commonly used wireless devices requiring higher power such as smartphones, or even electric vehicles. Higher powered WPT can be carried out using low frequency inductive coupling techniques, although range is very short (<20 cm). Therefore we see microwave WPT, as the only way of breaking the barrier of longer distance and higher power.We intend to take commercial Unmanned Aerial Vehicles (Drones) as a demanding, high added value, and un-resolved application example. Current drone technology is battery powered with a flight time of around only 20 minutes. The ability for continuous drone flight would be highly disruptive allowing many new applications for the technology that currently cannot be accessed e.g. first response situations such as delivery of emergency medical supplies. The development of new strategies for medium (<25m) range wireless power transmission (WPT) that permit high efficiency end to end energy transfer delivering up to 200W d.c. power will be a game changer, as it will largely offset the current critical dependence on rechargeable battery technology. This proposal will provide a step change in microwave WPT technology in order to allow continuous powering of arbitrarily located mobile electrical systems entirely wirelessly over distance in an energy effective way. We are not aware of any other research programme that has studied efficient end to end WPT to moving platforms with arbitrary orientation that are capable of both near and far field power delivery ensuring 24/7 endurance.We intend to address complex research challenges in microwave WPT regarding both transmit and receive rectifying antenna (rectenna) technology. We propose an innovative microwave WPT system that; (i) can transfer power to an object or objects whose position relative to the wireless power source is/are unknown a-priori, (ii) can lie in either the near or the far-field of each other with arbitrary orientation in both line of sight and non-line sight situations (iii) can operate using small, arbitrarily spaced, transmit sub-arrays, to artificially enhance the transmit aperture, since WPT with a single, conventional antenna, requires a massive aperture to produce reasonable efficiency. This will require major innovations that currently lie beyond state of the art. (a) Near/far field auto focusing tracking antenna array technology, with a high degree of focusing from a distributed array transmitter, allowing for extremely low free space path loss (b) Power amplifiers that can maintain extremely high efficiency over a range of power levels (c) Conformal, orientation agnostic rectifying antenna (rectenna) systems.In addition to the above we are aware that applying a conformal rectenna around a drone will be highly challenging, if the drone is still to be capable of efficient and stable flight. Therefore staff from the QUB school of Mechanical and Aerospace engineering are also involved in the project to establish novel conformal rectenna flight-ready solutions. As a grand finale to the research programme we propose to show two high impact practical demonstrations. We intend to show a laboratory measurement of high efficiency microwave WPT, but, to put this research project on the world stage, we plan to show a long duration vertical take-off and landing (VTOL) flight, by flying a drone continuously, powered entirely by microwave wireless power.
远距离无线传输高功率的能力可能会改变游戏规则。在本项目中,我们正在雄心勃勃地研究中功率(200W)、中距离(25m)微波无线功率传输(WPT)领域。目前对微波WPT的研究主要集中在低功率的“扫除”技术上,功率水平为1 mW。这可能对低功率传感器等应用有用,但不太可能对智能手机甚至电动汽车等需要更高功率的常用无线设备造成破坏。更高功率的WPT可以使用低频感应耦合技术进行,尽管射程非常短(<;20厘米)。因此,我们将微波WPT视为突破远距离、高功率障碍的必由之路。我们打算以商用无人机(无人机)为例,作为一个要求高、附加值高、尚未解决的应用实例。目前的无人机技术是由电池供电的,飞行时间只有20分钟左右。无人机连续飞行的能力将具有极大的破坏性,使目前无法获得的许多新技术应用得以实现,例如紧急医疗用品的交付等第一反应情况。中程(25M)无线电力传输(WPT)新策略的开发,可实现高效率的端到端能量传输,提供高达200W的直流电。电力将改变游戏规则,因为它将在很大程度上抵消目前对充电电池技术的严重依赖。这项提议将对微波WPT技术进行阶段性的改变,以便能够以一种节能的方式在远距离完全无线地连续为任意位置的移动电力系统供电。据我们所知,没有任何其他研究计划研究了有效的端到端WPT到任意方向的移动平台,能够同时提供近场和远场功率,确保24/7耐用。我们打算解决微波WPT中关于发射和接收整流天线(整流天线)技术的复杂研究挑战。我们提出了一种创新的微波WPT系统:(I)可以将功率传输到相对于无线电源的位置先验未知的一个或多个对象,(Ii)可以位于彼此的近场或远场中,在视线和非视线情况下都可以任意取向;(Iii)可以使用小的、任意间距的发射子阵列来操作,以人为地增强发射孔径,因为WPT使用单一的传统天线,需要大口径来产生合理的效率。这将需要目前超出最先进水平的重大创新。(A)近场/远场自动调焦跟踪天线阵列技术,分布式阵列发射机具有高度调焦能力,允许极低的自由空间路径损耗(B)功率放大器,可在一定功率范围内保持极高的效率(C)共形不可知整流天线(整流天线)系统。除此之外,我们知道,如果无人机仍要能够高效而稳定地飞行,在无人机周围应用共形整流天线将是非常具有挑战性的。因此,昆士兰大学机械和航空航天工程学院的工作人员也参与了该项目,以建立新的共形整流天线飞行准备解决方案。作为研究方案的最后一步,我们建议展示两个影响很大的实际演示。我们打算展示高效微波WPT的实验室测量,但为了将这一研究项目推向世界舞台,我们计划展示一次长时间的垂直起降(VTOL)飞行,即完全由微波无线功率提供动力的无人机连续飞行。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation of Rectifier Circuits using Different Diodes for Wireless Power Transfer
- DOI:10.1109/imarc49196.2021.9714524
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Sandhya Chandravanshi;Ecit Cwi;N. Buchanan;M. J. Akhtar
- 通讯作者:Sandhya Chandravanshi;Ecit Cwi;N. Buchanan;M. J. Akhtar
Assessing the Intrinsic Radiation Efficiency of Tissue-Implanted UHF Antennas
- DOI:10.1109/tap.2019.2935113
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.7
- 作者:El-Saboni, Yomna;Zelenchuk, Dmitry E.;Scanlon, William G.
- 通讯作者:Scanlon, William G.
Design and analysis of Maxwell fisheye lens based beamformer.
- DOI:10.1038/s41598-021-02058-9
- 发表时间:2021-11-23
- 期刊:
- 影响因子:4.6
- 作者:Abbasi MAB;Ansari RI;Machado GG;Fusco VF
- 通讯作者:Fusco VF
Frequency independent, remotely reconfigurable passive coherent perfect absorber using conventional inkjet-printing technology.
- DOI:10.1038/s41598-022-08665-4
- 发表时间:2022-03-28
- 期刊:
- 影响因子:4.6
- 作者:Assimonis SD;Machado GG;Fusco V
- 通讯作者:Fusco V
High Efficiency RF Energy Harvester for IoT Embedded Sensor Nodes
适用于物联网嵌入式传感器节点的高效射频能量采集器
- DOI:10.1109/apusncursinrsm.2019.8888685
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Assimonis S
- 通讯作者:Assimonis S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Buchanan其他文献
Epilepsy as an educational model
- DOI:
10.1016/s1059-1311(05)80100-1 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:
- 作者:
Neil Buchanan;Graham Scambler - 通讯作者:
Graham Scambler
Spatial-temporal metrics to assess collective behaviour in football : a systematic review and assessment of research quality and applicability
评估足球集体行为的时空指标:研究质量和适用性的系统回顾和评估
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Martin Corsie;Neil Buchanan;T. Craig;P. Swinton - 通讯作者:
P. Swinton
Validation of a Large Retrodirective CASSIOPeiA Solar Power Satellite Antenna Array
大型反向 CASSIOPeiA 太阳能卫星天线阵列的验证
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Neil Buchanan;Yat Hin Chan;Hossein Mardani;Dmitry Zelenchuk - 通讯作者:
Dmitry Zelenchuk
A Transistor-Based Dual-Band High-Efficiency Rectifier With Dual-Polarity Modes
具有双极性模式的基于晶体管的双频带高效整流器
- DOI:
10.1109/lmwc.2021.3121145 - 发表时间:
2022-02 - 期刊:
- 影响因子:3
- 作者:
Zhiwei Zhang;Vincent Fusco;Zhiqun Cheng;Neil Buchanan;Chao Gu - 通讯作者:
Chao Gu
A Quad-Band Power Amplifier Based on Impedance Frequency Modulation
一种基于阻抗调频的四频功率放大器
- DOI:
10.1109/tcsii.2021.3110481 - 发表时间:
2021-09 - 期刊:
- 影响因子:0
- 作者:
Zhiwei Zhang;Vincent Fusco;Zhiqun Cheng;Neil Buchanan;Chao Gu - 通讯作者:
Chao Gu
Neil Buchanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
- 批准号:
BB/Y004132/1 - 财政年份:2024
- 资助金额:
$ 111.54万 - 项目类别:
Research Grant
Seamless integration of efficient 6G wireless technologies for communication and Sensing
用于通信和传感的高效 6G 无线技术的无缝集成
- 批准号:
10102305 - 财政年份:2024
- 资助金额:
$ 111.54万 - 项目类别:
EU-Funded
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
- 批准号:
BB/Y003624/1 - 财政年份:2024
- 资助金额:
$ 111.54万 - 项目类别:
Research Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
- 批准号:
BB/Y00339X/1 - 财政年份:2024
- 资助金额:
$ 111.54万 - 项目类别:
Research Grant
Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
创新的电机技术,涵盖电桥和电角车辆架构,实现高效和可持续的电动汽车
- 批准号:
10061830 - 财政年份:2023
- 资助金额:
$ 111.54万 - 项目类别:
EU-Funded
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 111.54万 - 项目类别:
Standard Grant
Highly efficient delamination technologies to recover and reuse metals, glass, polymers from end-of-life photovoltaic panels (EVERPV)
高效分层技术可回收和再利用报废光伏板 (EVERPV) 中的金属、玻璃和聚合物
- 批准号:
10095603 - 财政年份:2023
- 资助金额:
$ 111.54万 - 项目类别:
EU-Funded
EM-TECH - Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
EM-TECH - 创新电动马达技术,涵盖电动车轴和电动弯道车辆架构,实现高效和可持续的电动交通
- 批准号:
10064117 - 财政年份:2023
- 资助金额:
$ 111.54万 - 项目类别:
EU-Funded
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 111.54万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204657 - 财政年份:2022
- 资助金额:
$ 111.54万 - 项目类别:
Standard Grant














{{item.name}}会员




