Quantum Dynamics in Correlated Spin Systems
相关自旋系统中的量子动力学
基本信息
- 批准号:EP/S016465/1
- 负责人:
- 金额:$ 62.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Contrary to our natural perceptions materials and devices which rely on quantum properties play an integral role in our everyday life. Even seemingly mundane phenomena such as electrical conduction relies on the band gap picture which is fundamentally quantum mechanical in nature; indeed a theoretical model which describes why, for example, copper is a metal, and silicon a semiconductor can be constructed using the quantum mechanics of electrons interacting with the crystal lattice upon which they sit. Extensions of this picture have led to the explanation of some superconductors, materials which conduct electricity without any resistance. Superconductors, although initially of fundamental interest at the time of their discovery in 1911, have more recently underpinned the function of MRI scanners in hospitals. Although the timelines from discovery, fundamental experimentation and interest to commercial applications are long, this has generally been the pathway to paradigm shifting technologies for society.This methodology of investigating fundamental properties of matter remain highly relevant and indeed, quantum topological materials are of general interest today. Most devices are fabricated in the micro-metre regime, but a full understanding of the parent bulk material is generally required to design and control the materials used. This proposal is firmly based in the realm of frontier science, and will exploit new techniques that have been developed by the investigation team to tune and understand quantum interactions at a fundamental level. The project is based upon a material known as spin ice. The beauty of this material is that previous research has identified the basic, apparently classical, properties that are well-understood. We want to go further to investigate and characterise emergent states, where properties can be manipulated by changing experimental variables and the effect of hitherto neglected quantum dynamics that underly the observed physical behaviour. This proposal exploits our existing knowledge of the classical properties of spin ice and will investigate underlying quantum processes. In particular we will study the quantum tunneling of spin ice's so-called magnetic monopoles. This will allow us to understand how to tune quantum states in the future. In correlated spin physics a clear goal has been to understand the crossover between classical and quantum behaviour. In this proposal we will investigate spin ice which has a very large magnetic moment and has often been described as a classical magnet, to reveal underlying quantum behaviour. We have identified several methods to explore this, and importantly all require our unique high frequency susceptometer that we have developed over the past few years. We have already identified dilute spin ice as a material to investigate tunneling of the magnetisation and propose to investigate the phase diagram as a function of magnetic field. This will allow us to understand how magnetic monopoles hop at low temperatures in this material, and how the emergent and non-equilibrium states develop. Moreover we can tune a magnetic field applied to spin ice to look at a critical point where quantum fluctuations may play a significant role. We can also look at the tunneling of monopoles in new spin ice materials at higher frequency than previously possible. This grant will allow us to develop and retain high-level technical and scientific expertise and train a future scientific leader in developing cutting-edge science and technology.
与我们的自然认知相反,依赖于量子特性的材料和设备在我们的日常生活中扮演着不可或缺的角色。甚至像导电这样看似平凡的现象也依赖于本质上是量子力学的带隙图像;事实上,一个理论模型描述了为什么,例如,铜是金属,硅是半导体,可以使用电子与它们所在的晶格相互作用的量子力学来构建。这一图景的延伸导致了对某些超导体的解释,这些超导体是一种无电阻导电的材料。超导体虽然在1911年被发现时就引起了人们的根本兴趣,但最近已经成为医院MRI扫描仪的基础。虽然从发现、基础实验和兴趣到商业应用的时间线很长,但这通常是社会范式转变技术的途径。这种研究物质基本性质的方法仍然高度相关,事实上,量子拓扑材料今天受到普遍关注。大多数器件都是在微米范围内制造的,但通常需要对母体散装材料有充分的了解才能设计和控制所使用的材料。该提案牢固地建立在前沿科学领域,并将利用调查小组开发的新技术来调整和理解基本水平的量子相互作用。该项目是基于一种被称为自旋冰的材料。这种材料的美妙之处在于,以前的研究已经确定了基本的,显然是经典的,被充分理解的性质。我们希望进一步研究和发现涌现态,在这些状态中,可以通过改变实验变量和迄今为止被忽视的量子动力学效应来操纵性质,而量子动力学是所观察到的物理行为的基础。这个提议利用了我们现有的自旋冰的经典性质的知识,并将调查潜在的量子过程。特别是我们将研究自旋冰的所谓磁单极子的量子隧穿。这将使我们能够理解如何在未来调整量子态。在相关自旋物理学中,一个明确的目标是理解经典和量子行为之间的交叉。在这个提议中,我们将研究自旋冰,它有一个非常大的磁矩,并经常被描述为一个经典的磁铁,揭示潜在的量子行为。我们已经确定了几种方法来探索这一点,重要的是,所有这些方法都需要我们在过去几年中开发的独特的高频电磁辐射计。我们已经确定了稀自旋冰作为一种材料来研究磁化的隧穿,并建议研究作为磁场函数的相图。这将使我们能够理解磁单极子如何在这种材料中的低温下跳跃,以及新兴和非平衡状态如何发展。此外,我们可以调整施加在自旋冰上的磁场,以观察量子涨落可能起重要作用的临界点。我们还可以在比以前更高的频率下观察新的自旋冰材料中单极子的隧穿。这笔赠款将使我们能够发展和保留高水平的技术和科学专业知识,并培养未来的科学领导者,发展尖端科学和技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radio-Frequency Manipulation of State Populations in an Entangled Fluorine-Muon-Fluorine System
氟-介子-氟纠缠系统中态粒子的射频操控
- DOI:10.1103/physrevlett.129.077201
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Billington D
- 通讯作者:Billington D
Nuclear spin assisted quantum tunnelling of magnetic monopoles in spin ice
自旋冰中核自旋辅助磁单极子的量子隧道效应
- DOI:10.48550/arxiv.1903.11122
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Paulsen C
- 通讯作者:Paulsen C
Bimetallic Synergy Enables Silole Insertion into THF and the Synthesis of Erbium Single-Molecule Magnets.
双金属协同作用使噻咯插入到 THF 中并合成铒单分子磁体。
- DOI:10.1002/anie.202317678
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:De S
- 通讯作者:De S
Tuning the dynamics in Fe3O4 nanoparticles for hyperthermia optimization
- DOI:10.1063/5.0017903
- 发表时间:2020-08-17
- 期刊:
- 影响因子:4
- 作者:Chen, Hao;Billington, David;Majetich, Sara A.
- 通讯作者:Majetich, Sara A.
Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys
- DOI:10.1103/physrevb.102.174405
- 发表时间:2020-11-05
- 期刊:
- 影响因子:3.7
- 作者:Billington, D.;James, A. D. N.;Dugdale, S. B.
- 通讯作者:Dugdale, S. B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Richard Giblin其他文献
Sean Richard Giblin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Richard Giblin', 18)}}的其他基金
Frustration: more ways to emergent behaviour.
挫折:更多的紧急行为方式。
- 批准号:
EP/L019760/1 - 财政年份:2014
- 资助金额:
$ 62.19万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Universal Quantum Dynamics of Impurity Particles in Strongly Correlated Matter
强相关物质中杂质粒子的通用量子动力学
- 批准号:
23H01174 - 财政年份:2023
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-equilibrium dynamics of correlated quantum materials
相关量子材料的非平衡动力学
- 批准号:
RGPIN-2021-04338 - 财政年份:2022
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Grants Program - Individual
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
- 批准号:
RGPIN-2017-05470 - 财政年份:2022
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Grants Program - Individual
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
- 批准号:
RGPIN-2017-05470 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Grants Program - Individual
Non-equilibrium dynamics of correlated quantum materials
相关量子材料的非平衡动力学
- 批准号:
RGPIN-2021-04338 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of correlated quantum systems out of equilibrium
失去平衡的相关量子系统的动力学
- 批准号:
453644843 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
WBP Fellowship
Non-equilibrium dynamics of quantum order in strongly correlated electron system revealed by using ultrafast x-ray pulses
利用超快 X 射线脉冲揭示强相关电子系统中量子级的非平衡动力学
- 批准号:
21K03457 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-equilibrium dynamics of correlated quantum materials
相关量子材料的非平衡动力学
- 批准号:
DGECR-2021-00359 - 财政年份:2021
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Launch Supplement
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
- 批准号:
RGPIN-2017-05470 - 财政年份:2020
- 资助金额:
$ 62.19万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of correlated many-body quantum systems
相关多体量子系统的动力学
- 批准号:
2431330 - 财政年份:2020
- 资助金额:
$ 62.19万 - 项目类别:
Studentship