Dynamics of correlated many-body quantum systems

相关多体量子系统的动力学

基本信息

  • 批准号:
    2431330
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum Simulation seeks to gain fundamental insight into the behaviour of complex microscopic systems, which underlie diverse fields ranging from materials science to chemistry and biology. New understanding can now be achieved by modelling (or simulating) this behaviour with experiments that are controllable on a microscopic, quantum-mechanical level. This provides a revolutionary approach that could solve problems that are currently intractable for even the fastest supercomputer.Ultracold atoms in optical lattices offer the unique possibility to study such behaviour of many-body quantum systems in our laboratories. In particular, we have setup quantum-gas microscope platforms, which have enabled us to achieve single-site and single-atom resolved detection of atoms in an optical lattice. This exciting new tool will open the path to the study of strongly correlated fermionic quantum systems in optical lattices with unprecedented insight into their local properties, which is the core subject of the project. *Quantum spin models. The first part of the of the project will be devoted to improve the single-atom imaging systems and implement the laser cooling of a second atomic species to realise two-component ultracold quantum gases in an optical lattice. Such a system of two-component bosonic atoms can mimic different spin models, which are of importance in condensed matter physics. The tailorable scattering lengths will make it possible to implement S=1/2 and S=1 models with (near) Heisenberg symmetry. We can also engineer, antiferromagnetic exchange by control over the interactions within one species, so that this interaction strength becomes markedly different to the other scales of interaction strength in the system: Another way of doing so is by preparation of the system into a highly excited initial state generated by the sudden imposition of staggered onsite energies such that the Mott insulator is a metastable state, and exchange energies change sign. A further technique which may be tested are Floquet modulation techniques. *Quench dynamics with bosonic atoms. A key goal is to study the out-of-equilibrium dynamics of many-body fermionic quantum systems. We are planning to extend the previous studies of correlation dynamics in 1D to uniform 2D systems, where existing numerical and analytical approaches suffer from limitations. We are planning for example create a charge-density wave using tailored light potentials and observe its relaxation to equilibrium, and we will in particular study the dynamics as a function of the interspecies interaction. Single or multi-site addressing will also allow us to perform local quenches. Single-atom imaging will enable us to monitor the direct spreading of correlations in many-body systems not only in one dimension but also in 2D or in different lattice geometries, such as triangular lattices. Furthermore, the production rate of excitations and the formation of magnetic domains when tuning the effective interaction strength slowly across the critical point can be directly imaged in-situ to explore Kibble-Zurek-like physics.
量子模拟试图从根本上洞察复杂微观系统的行为,这些系统构成了从材料科学到化学和生物学等不同领域的基础。现在可以通过在微观、量子力学水平上可控的实验来模拟(或模拟)这一行为,从而获得新的理解。这提供了一种革命性的方法,可以解决目前即使是最快的超级计算机也无法解决的问题。光学晶格中的超冷原子为在我们的实验室中研究多体量子系统的这种行为提供了独特的可能性。特别是,我们建立了量子气体显微镜平台,使我们能够实现对光学晶格中原子的单位和单原子分辨检测。这一令人兴奋的新工具将为研究光学晶格中的强关联费米子量子系统开辟道路,前所未有地深入了解它们的局域性质,这是该项目的核心课题。*量子自旋模型。该计划的第一部分将致力于改进单原子成像系统,并实施第二原子物种的激光冷却,以实现光学晶格中的双组分超冷量子气体。这样一个双组分玻色子原子系统可以模拟不同的自旋模型,这在凝聚态物理中是重要的。这种可调的散射长度将使实现具有(接近)海森堡对称性的S=1/2和S=1模型成为可能。我们还可以通过控制一个物种内的相互作用来设计反铁磁交换,从而使这种相互作用强度变得与系统中其他相互作用强度的尺度明显不同:另一种方法是准备系统进入由突然施加交错的现场能量而产生的高激发初始态,使得Mott绝缘体是亚稳态,并且交换能量改变符号。可以测试的另一种技术是Floquet调制技术。*玻色原子的猝灭动力学。一个关键的目标是研究多体费米子量子系统的非平衡动力学。我们计划将以前对一维相关动力学的研究扩展到统一的二维系统,而现有的数值和分析方法受到限制。例如,我们计划使用定制的光势来创建电荷密度波,并观察其松弛到平衡,我们将特别研究作为物种间相互作用的函数的动力学。单站点或多站点寻址也将允许我们执行本地淬火。单原子成像将使我们能够监测多体系统中关联的直接扩展,不仅在一维,而且在二维或不同晶格几何结构中,如三角形晶格。此外,当在临界点缓慢调节有效相互作用强度时,激发的产生速率和磁畴的形成可以直接在现场成像,以探索Kibble-Zurek类物理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

共振价键理论及其在强关联电子体系中的应用
  • 批准号:
    11174364
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Advancing the Many-body Band Inversion Paradigm for Correlated Quantum Materials
职业:推进相关量子材料的多体能带反演范式
  • 批准号:
    2144352
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
2022 Correlated Electron Electron Systems: Topology and Correlations: Long-Range Entanglement in Many-Body Systems
2022 相关电子电子系统:拓扑和相关性:多体系统中的长程纠缠
  • 批准号:
    2218821
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Experimental study on open quantum many-body systems using strongly correlated cold atoms
利用强关联冷原子的开放量子多体系统实验研究
  • 批准号:
    21H01014
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Markov-chain Monte Carlo without detailed balance and its application to strongly correlated many-body systems
无详细平衡的马尔可夫链蒙特卡罗及其在强相关多体系统中的应用
  • 批准号:
    20H01824
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three-dimensional dualities and their applications to strongly-correlated quantum many-body systems
三维对偶性及其在强相关量子多体系统中的应用
  • 批准号:
    20J13415
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical study of open quantum many-body systems in strongly correlated ultracold atoms
强相关超冷原子中开放量子多体系统的理论研究
  • 批准号:
    20K14383
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
  • 批准号:
    RGPIN-2018-05502
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
  • 批准号:
    1932796
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了