High resolution, cryogenic analytical and transfer scanning electron microscope (HR-CAT-SEM)

高分辨率、低温分析和转移扫描电子显微镜 (HR-CAT-SEM)

基本信息

  • 批准号:
    EP/S021434/1
  • 负责人:
  • 金额:
    $ 199.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Natural and man-made molecular materials are at the heart of many modern day technologies, from energy conversion and storage devices, to propulsion systems to construction materials, whilst being also at the core of everyday life, from foodstuffs, healthcare products and cosmetics, to electronic devices and textiles. Thanks to recent advances in the analytical sciences, now we know what molecules are present within "molecular materials", however, due to the fact that most molecular materials (including living matter) exhibit highly complex, heterogeneous compositions, with a lack of long-range order, combined with highly dynamic/metastable properties, often we have only a vague idea where these molecules are located. Considering that all the important functional properties of materials, including electronic, photonic, magnetic, catalytic gas-sorption and transport, emerge at the nanoscale, and the biological function of living cells relies on the molecular machinery operating at the nanoscale, it is critically important to develop new methodologies capable of providing full structural information on any material of any complexity, from single molecule to nanoscale supramolecular assembly to 3D microscale architectures.Currently, amongst the analytical techniques, electron microscopy (EM) is in a unique position to offer morphological information content, in 3D, across the pico-, nano- and micro-length scales. However, in the context of molecular materials, EM methodologies suffer from two significant drawbacks, related to the invasive nature of the electron beam that can rapidly damage delicate molecules within materials, whilst they are imaged. Also, EM operates in vacuum conditions, being incompatible with most hydrated materials, including biological samples, the native structures of which are simply lost when water is removed. The proposed new HR-CAT-SEM platform - comprising a uniquely configured High Resolution, Cryogenic Analytical and Transfer Scanning Electron Microscope, is designed to solve these challenges, through the use of low energy electron beams (down to 1keV), whilst delivering 1.6nm of spatial resolution necessary for effective nanoscale analyses (enabled by the use of a field emission gun (FEG), combined with modern high contrast, multi-mode detectors); and by stabilising the material, either thermally or through hydrated sample vitrification, and sectioning using a focused ion beam (FIB), all under cryogenic conditions, thereby enabling the investigation of previously intractable materials science problems, through 3D multiscale analysis. Importantly, the cryo-FIB sectioning and cryo-transfer protocols developed at Nottingham, to be implemented within the HR-CAT-SEM, will allow a journey across the length scales; starting from the microscale, enabled by optical microscopy and scanning electron microscopy (SEM), to the nanoscale (FEG-SEM), and picoscale (transfer to high resolution transmission electron microscopy HR-TEM), delivering the most complete structural understanding of complex molecular materials to date. In addition, the unique cryo-transfer capability of the HR-CAT-SEM will open up new horizons in correlative analysis, where structural information obtained by EM methods will be complemented by secondary ion mass spectrometry (OrbiSIMS) and X-ray photoelectron spectroscopy (XPS), providing correlated information on chemical molecular composition and molecular bonding, from the same volume of material. A project of such scale and ambition is made possible due to the rich expertise in this area available at Nottingham, and the uniquely configured Nanoscale & Microscale Research Centre laboratories www.nottingham.ac.uk/nmrc, where the HR-CAT-SEM will be housed, that already hosts all the instruments necessary for correlative analysis (HRTEM, XPS, OrbiSIMS), under one roof, along with the necessary sample handling infrastructure, required for full, effective implementation of this project.
天然和人造分子材料是许多现代技术的核心,从能量转换和存储设备到推进系统到建筑材料,同时也是日常生活的核心,从食品,医疗保健产品和化妆品到电子设备和纺织品。由于分析科学的最新进展,现在我们知道什么分子存在于“分子材料”中,然而,由于大多数分子材料(包括生命物质)表现出高度复杂,非均匀的组成,缺乏长程有序,结合高度动态/亚稳态特性,我们通常只有一个模糊的概念,这些分子位于何处。考虑到材料的所有重要功能特性,包括电子、光子、磁性、催化气体吸附和运输,都出现在纳米尺度上,而活细胞的生物功能依赖于在纳米尺度上运作的分子机制,开发能够提供任何复杂材料的完整结构信息的新方法至关重要,从单分子到纳米级超分子组装再到3D微米级结构。目前,在分析技术中,电子显微镜(EM)处于独特的位置,可以在3D中提供跨皮科、纳米和微米长度尺度的形态信息内容。然而,在分子材料的背景下,EM方法具有两个显著的缺点,这与电子束的侵入性有关,电子束在成像时可以迅速损坏材料内的精细分子。此外,EM在真空条件下操作,与大多数水合材料不相容,包括生物样品,当水被去除时,其天然结构简单地丢失。建议的新HR-CAT-SEM平台-包括一个独特配置的高分辨率、低温分析和转移扫描电子显微镜,旨在通过使用低能电子束解决这些挑战。(低至1 keV),同时提供有效的纳米级分析所需的1.6nm空间分辨率(通过使用场发射枪(FEG),结合现代高对比度,多模式探测器实现);以及通过热或通过水合样品玻璃化稳定材料,并使用聚焦离子束(FIB)切片,所有这些都是在低温条件下进行的,从而能够通过3D多尺度分析来研究以前难以解决的材料科学问题。重要的是,在诺丁汉开发的冷冻FIB切片和冷冻转移方案将在HR-CAT-SEM中实施,将允许跨越长度尺度的旅程;从通过光学显微镜和扫描电子显微镜(SEM)实现的微米尺度开始,到纳米尺度(FEG-SEM)和皮尺度(转换为高分辨率透射电子显微镜HR-TEM),提供迄今为止对复杂分子材料最完整的结构理解。此外,HR-CAT-SEM独特的低温传输能力将为相关分析开辟新的视野,通过EM方法获得的结构信息将通过二次离子质谱(OrbiSIMS)和X射线光电子能谱(XPS)进行补充,提供相同体积材料的化学分子组成和分子键合的相关信息。由于诺丁汉在这一领域拥有丰富的专业知识,以及独特配置的纳米和微米研究中心实验室www.nottingham.ac.uk/nmrc,HR-CAT-SEM将被安置在那里,该实验室已经拥有相关分析所需的所有仪器,因此这种规模和雄心的项目成为可能(HRTEM、XPS、OrbiSIMS),并沿着必要的样品处理基础设施,这是全面、有效实施该项目所必需的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation.
  • DOI:
    10.1021/acsami.2c20262
  • 发表时间:
    2023-03-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Jodeiri, Keyvan;Foerster, Aleksandra;Trindade, Gustavo F.;Im, Jisun;Carballares, Diego;Fernandez-Lafuente, Roberto;Pita, Marcos;Lacey, Antonio L. De;Parmenter, Christopher;Tuck, Christopher
  • 通讯作者:
    Tuck, Christopher
Structural Flexibility and Disassembly Kinetics of Single Ferritins Using Optical Nanotweezers
  • DOI:
    10.1101/2023.09.22.558948
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arman Yousefi;Ze-yuan Zheng;Saaman Zargarbashi;Mahya Assadipapari;Graham J. Hickman;Christopher D. J. Parmenter;Gabriel Sanderson;Dominic Craske;Lei Xu;Mohsen Rahmani-;Cuifeng Ying
  • 通讯作者:
    Arman Yousefi;Ze-yuan Zheng;Saaman Zargarbashi;Mahya Assadipapari;Graham J. Hickman;Christopher D. J. Parmenter;Gabriel Sanderson;Dominic Craske;Lei Xu;Mohsen Rahmani-;Cuifeng Ying
Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte
  • DOI:
    10.1016/j.ensm.2024.103280
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    20.4
  • 作者:
    Konstantinos Dimogiannis;Andrzej Sankowski;Conrad Holc;C. Parmenter;Graham N. Newton;Darren A. Walsh;James O'Shea;Andrei N. Khlobystov;Lee R. Johnson
  • 通讯作者:
    Konstantinos Dimogiannis;Andrzej Sankowski;Conrad Holc;C. Parmenter;Graham N. Newton;Darren A. Walsh;James O'Shea;Andrei N. Khlobystov;Lee R. Johnson
Efficacy of antimicrobial and anti-viral coated air filters to prevent the spread of airborne pathogens.
  • DOI:
    10.1038/s41598-022-06579-9
  • 发表时间:
    2022-03-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Watson R;Oldfield M;Bryant JA;Riordan L;Hill HJ;Watts JA;Alexander MR;Cox MJ;Stamataki Z;Scurr DJ;de Cogan F
  • 通讯作者:
    de Cogan F
Evolution of the pore structure-transport relationship during catalyst reduction and sintering studied by integrated multi-scale porosimetry and multi-modal imaging
  • DOI:
    10.1016/j.ces.2023.118880
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Suleiman Mousa;V. Novák;R. Fletcher;G. Kelly;Mónica García;N. Macleod;C. Parmenter;S. Rigby
  • 通讯作者:
    Suleiman Mousa;V. Novák;R. Fletcher;G. Kelly;Mónica García;N. Macleod;C. Parmenter;S. Rigby
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Khlobystov其他文献

Andrei Khlobystov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Khlobystov', 18)}}的其他基金

Metal Atoms on Surfaces & Interfaces (MASI) for Sustainable Future
表面上的金属原子
  • 批准号:
    EP/V000055/1
  • 财政年份:
    2021
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Research Grant
NanoPrime: Maximising Equipment and Expertise Sharing in Nanoscience
NanoPrime:最大限度地共享纳米科学的设备和专业知识
  • 批准号:
    EP/R025282/1
  • 财政年份:
    2018
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Research Grant
Triggering, Controlling and Imaging Chemical Reactions at the Single-Molecule Level by Electron Beam
通过电子束触发、控制和成像单分子水平的化学反应
  • 批准号:
    EP/R024790/1
  • 财政年份:
    2018
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Fellowship
Elucidating the potential interaction of manufactured nanoparticles with polycyclic aromatic hydrocarbons: an integrated toxicogenomics approach
阐明人造纳米粒子与多环芳烃的潜在相互作用:综合毒物基因组学方法
  • 批准号:
    NE/L006138/1
  • 财政年份:
    2014
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Research Grant
Multi-Functional Nanoscale Platforms: Bridging the Gap between Molecular and Macroscopic Worlds
多功能纳米平台:弥合分子世界和宏观世界之间的差距
  • 批准号:
    EP/L014696/1
  • 财政年份:
    2013
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Research Grant
Non-Covalent Assembly of Functional Nanostructures
功能纳米结构的非共价组装
  • 批准号:
    EP/C545273/1
  • 财政年份:
    2006
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Fellowship
IDEAS Factory - Chemical Craftwork: Directed Assembly of Functional Patterns (Brianchell)
IDEAS Factory - 化学工艺:功能图案的定向组装 (Brianchell)
  • 批准号:
    EP/D023777/1
  • 财政年份:
    2006
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Research Grant

相似国自然基金

低温绝缘材料局部放电特性与电老化机理的研究
  • 批准号:
    50577038
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multiband multibeam antennas for cryogenic cooled satellite ground stations
用于低温冷却卫星地面站的多频段多波束天线
  • 批准号:
    IE230100323
  • 财政年份:
    2024
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Early Career Industry Fellowships
Cryogenic Experimental Laboratory for Low-background Australian Research
澳大利亚低本底研究低温实验实验室
  • 批准号:
    LE240100044
  • 财政年份:
    2024
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Cryogenic microwave characterization facility for quantum technologies
用于量子技术的低温微波表征设备
  • 批准号:
    LE240100045
  • 财政年份:
    2024
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
A cryogenic multifunctional multiscale material characterisation facility
低温多功能多尺度材料表征设施
  • 批准号:
    LE230100024
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Visualization of Excitation Energy Transfer of Photosystem I Via Cryogenic Excitation Spectral Microscopy
通过低温激发光谱显微镜观察光系统 I 的激发能量转移
  • 批准号:
    23KJ0158
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of silicon nitride thin films as optical mirror coatings for cryogenic based gravitational wave detectors
氮化硅薄膜作为低温引力波探测器光学镜涂层的研究
  • 批准号:
    ST/X00533X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Training Grant
Investigation of the fibre-matrix interface for glass fibre & carbon fibre composites exposed to cryogenic loading and fatigue conditions.
玻璃纤维纤维-基体界面的研究
  • 批准号:
    2889289
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Studentship
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
  • 批准号:
    2232117
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Continuing Grant
Improved Detection of Gravitational Waves using Silicon Nitride Thin Films Under Cryogenic Conditions.
在低温条件下使用氮化硅薄膜改进引力波检测。
  • 批准号:
    2903348
  • 财政年份:
    2023
  • 资助金额:
    $ 199.35万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了