Aerosol Deposition for Manufacturing and Developing Next Generation Dielectric Charge Storage Devices

用于制造和开发下一代介电电荷存储器件的气溶胶沉积

基本信息

  • 批准号:
    EP/S029036/1
  • 负责人:
  • 金额:
    $ 58.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Robust dielectric charge storage devices offering reliable operation at high voltage and temperature are required for power electronics in renewable energy and for harsh environment electronics. A revolution has already taken place in wide band gap semiconductors, interconnects and high-temperature packaging, allowing operation at temperatures of 300C. Similar breakthroughs have yet to be made in dielectric charge storage technology: overcoming this barrier would advance electronics for power conditioning and conversion, energy storage, aerospace distributed control systems, deep well geothermal energy and defence applications. As well as thermal resilience, the new generation of Class II ceramic capacitors must operate reliably and safely at high voltages, especially important for power and energy storage applications. The main goal of the project is to advance particle aerosol deposition (AD) as a product development and manufacturing tool for a new generation of capacitors based on novel alkaline earth meta-niobate dielectric ceramics. We will demonstrate single-chamber, multi-nozzle sequential deposition of dielectric and electrode materials, with sophisticated process control to fabricate multilayer structures comprising ceramic, metal and polymer materials. Benign capacitor failure modes will be investigated, exploiting the unique capabilities of AD for room-temperature fabrication and materials integration. The high ceramic densities and 10 nm scale pore sizes attainable by AD, together with an absence of thermally induced ceramic defects (because of our selection of dielectric material and avoidance of high temperature sintering) offers to realise performance levels unattainable from existing materials and manufacturing procedures. Key components of the project are: continuous particle manufacture using cascade reactors for rapid compositional prototyping of ultrafine powders; jet milling for refinement of particle structure; computational fluid dynamics to support AD process development; experimental optimisation of AD parameters for the new dielectric materials; evaluation of the new capacitors in a power electronic converter. Understanding the interplay between manufacturing conditions and product properties is an essential element of this multidisciplinary project. Aerosol deposition avoids a range of problems associated with high temperature processing that degrade dielectric ceramic performance. This future manufacturing route is relevant to single layer, mm scale thickness, and multilayer capacitors with > 1 um component layers. Deposition rates in excess of 10 um per min within a scalable manufacturing process offer a solution to the long-standing challenge of integrating a wide range of thermally dissimilar materials. The approach offers exciting possibilities for translatiion into an industrial manufacturing context, bringing advantages to the emergent field of wide band gap semiconductor based electronics.The project will use the industry-focussed aerosol deposition manufacturing research facility at Manchester University, the first of its kind in the UK, funded by the Henry Royce Institute.
可再生能源电力电子和恶劣环境电子需要在高压和高温下提供可靠运行的坚固的介电电荷存储设备。在宽带隙半导体、互连和高温封装方面已经发生了一场革命,可以在300摄氏度的温度下运行。在介电电荷存储技术方面也取得了类似的突破:克服这一障碍将推动电力调节和转换、能源存储、航空航天分布式控制系统、深井地热能和国防应用方面的电子技术的发展。除了热弹性外,新一代II类陶瓷电容器必须在高压下可靠安全地工作,这对于电力和储能应用尤其重要。该项目的主要目标是推进颗粒气溶胶沉积(AD)作为基于新型碱土-元铌酸盐介电陶瓷的新一代电容器的产品开发和制造工具。我们将展示单室、多喷嘴连续沉积电介质和电极材料,并采用复杂的工艺控制来制造由陶瓷、金属和聚合物材料组成的多层结构。良性电容失效模式将被研究,利用AD在室温制造和材料集成方面的独特能力。高陶瓷密度和10nm孔径可通过AD实现,再加上没有热致陶瓷缺陷(因为我们选择的介电材料和避免高温烧结)提供实现现有材料和制造工艺无法实现的性能水平。该项目的关键组成部分是:使用级联反应器进行超细粉末快速组成原型的连续颗粒制造;射流铣削细化颗粒结构;计算流体动力学支持AD流程开发;新型介电材料AD参数的实验优化电力电子变换器中新型电容器的评价。了解制造条件和产品特性之间的相互作用是这个多学科项目的基本要素。气溶胶沉积避免了一系列与高温处理相关的问题,这些问题会降低介电陶瓷的性能。这种未来的制造路线与单层,毫米尺度厚度和具有bbb110微米元件层的多层电容器有关。在可扩展的制造工艺中,沉积速率超过每分钟10微米,为集成各种热不同材料的长期挑战提供了解决方案。该方法为将其转化为工业制造提供了令人兴奋的可能性,为基于宽带隙半导体的新兴电子领域带来了优势。该项目将使用曼彻斯特大学以工业为重点的气溶胶沉积制造研究设施,这是英国首个此类设施,由亨利·罗伊斯研究所资助。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature dependence of incommensurate modulation in Ca0.28Ba0.72Nb2O6
  • DOI:
    10.1063/5.0157636
  • 发表时间:
    2023-08-14
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Beanland,R.;Harrison,L.;Milne,S. J.
  • 通讯作者:
    Milne,S. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Milne其他文献

Steven Milne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Milne', 18)}}的其他基金

Analysis of Polar Nanostructures in High Temperature Relaxor Dielectrics: a Framework for Materials Discovery
高温弛豫电介质中极性纳米结构的分析:材料发现的框架
  • 批准号:
    EP/P015514/1
  • 财政年份:
    2017
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Research Grant
New Approach to Extend Durability of Sorbent Powders for Multicycle High Temperature CO2 Capture in Hydrogen
延长多循环高温二氧化碳捕集氢气吸附剂粉末耐久性的新方法
  • 批准号:
    EP/J014702/1
  • 财政年份:
    2012
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Research Grant

相似海外基金

Clarification of the aluminum alloy deposition mechanism under the electromagnetic circumstance in alternate current pulsed gas metal arc process applied wire arc additive manufacturing (WAAM)
阐明交流脉冲气体金属电弧工艺应用电弧增材制造(WAAM)电磁环境下铝合金沉积机理
  • 批准号:
    24K17530
  • 财政年份:
    2024
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition
职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石
  • 批准号:
    2238235
  • 财政年份:
    2023
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Standard Grant
REFURBISHMENT AND ADDITIVE MANUFACTURING ACCOMPLISHED BY KINETIC DEPOSITION (RE-MAKE)
通过动力学沉积完成翻新和增材制造(再制造)
  • 批准号:
    EP/Y036093/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Research Grant
Development of resource efficient manufacturing process to produce sustainable hardmetal powders for laser Directed Energy Deposition
开发资源高效的制造工艺,生产用于激光定向能量沉积的可持续硬质合金粉末
  • 批准号:
    10072446
  • 财政年份:
    2023
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Grant for R&D
RII Track-4:@NASA: Investigation of Two-Phase Aerosol Formation, Transport, and Deposition in Aerosol Jet Printing for Submicron Manufacturing of Printed Electronic Devices
RII Track-4:@NASA:用于印刷电子设备亚微米制造的气溶胶喷射印刷中两相气溶胶形成、传输和沉积的研究
  • 批准号:
    2327460
  • 财政年份:
    2023
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
  • 批准号:
    2229092
  • 财政年份:
    2023
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Standard Grant
Material Extrusion is the fundamental idea behind Fused Deposition Modeling, the most widespread Additive Manufacturing (AM) method
材料挤出是熔融沉积建模(最广泛使用的增材制造 (AM) 方法)背后的基本理念
  • 批准号:
    2739019
  • 财政年份:
    2022
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Studentship
Additive Manufacturing of Large Functional Parts Using Wire Directed Energy Deposition (DED)
使用线定向能量沉积 (DED) 增材制造大型功能部件
  • 批准号:
    571100-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Applied Research and Development Grants - Level 2
Manufacturing Multi-Material Nanostructures Using Supercritical CO2-Assisted Spray Deposition
使用超临界 CO2 辅助喷雾沉积制造多材料纳米结构
  • 批准号:
    2134465
  • 财政年份:
    2022
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Standard Grant
Innovative Process Planning Strategies for Bead Deposition Based Additive Manufacturing Processes
基于珠沉积的增材制造工艺的创新工艺规划策略
  • 批准号:
    RGPIN-2018-04842
  • 财政年份:
    2022
  • 资助金额:
    $ 58.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了