EPSRC-SFI: Emergent Magnetism and Spin Interactions in Metallo-Molecular Interfaces

EPSRC-SFI:金属分子界面中的新兴磁性和自旋相互作用

基本信息

  • 批准号:
    EP/S030263/1
  • 负责人:
  • 金额:
    $ 82.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

The interface between two materials can be used to give rise to new properties that neither component could have separately (emergence), to tune the capabilities found in of one of them (enhancement), or to share functionalities (proximity). Our range of magnetic materials is limited; only the metals iron, nickel and cobalt show spontaneous magnetic ordering at room temperature. Here, we use molecular interfaces to generate novel magnets outside the Stoner criterion, to control the spin properties of thin films and add functionalities. From a fundamental point of view, the origin of these effects is not fully explained due to the complexity of the interfaces, the materials involved and their intricate quantum-electronic properties. The scientific plan of the proposal is: i. To develop a new theoretical framework to study magneto-molecular coupling and interfaces accounting for the many physical factors at play in the coupling between metals and molecules. These factors include, possibly in combination, interface structure and relaxation, the degree of re-hybridisation and the ensuing charge-transfer for the emergence and descriptors of interfacial magnetic ordering.ii. To improve the properties of commonly used magnetic thin films via nanocarbon overlayers. Magnetic materials play a critical role in computing, sensors, power conversion and generation, signal transfer and many other technologies. Tuning of the desired properties is achieved via alloying between 3d ferromagnets and/or other metals (e.g. FeNi, FeCoB), by combining with rare earths (e.g. SmCo and NdFeB), using high spin orbit coupling interfaces (e.g. Co/Pt) or using oxides to achieve insulating ferrimagnets (e.g. YIG). These strategies can lead to a wide range of magnetic anisotropies, coercivities and conductivities. However, some functionalities, such as the electric control of magnetism, the combination of semiconducting and magnetic properties or enhancing the blocking temperature in magnetic elements remain elusive. Furthermore, some of the materials used in magnetism and spintronics are expensive, harmful to the environment and/or difficult to recycle. Molecular interfaces, on the other hand, make use of abundant, eco-friendly materials to bring about new or enhanced spin functionalities. Such opportunities include the generation of spin ordering in dia/paramagnetic metals, the control of coercivity (soften/harden), increases in the ordering temperature of nanostructures, the manipulation of the magnetisation axis, and improved performance in spin torque devices by tuning the spin orbit coupling. iii. To create the opportunity for switchable magnetism by turning on/off the interfacial spin ordering using electric fields. Fully stable spin ordering is required in applications such as magnetic memories. However, having the capability to turn on and off the magnetic response of a sample would open new avenues of research and applications, from future high frequency superconducting electronics and qubits, to the design of sub-wavelength photo-memories. The properties of metallo-molecular interfaces are highly dependent on charge transfer and re-hybridisation. Electric or optical irradiation can therefore be used to control their magnetic response.The consequences of spin ordering and polarised electron transfer are not limited to magnetic materials and their usage. Charge transfer is an essential chemical and biochemical process, and research in spin-related metallo-molecular coupling can also in the future contribute to other areas of science, such as electrochemical energy storage, electro-catalysis, and the use of metals in biomedical applications such as medical imaging.
两种材料之间的界面可以用来产生任何一种成分都不可能单独拥有的新特性(涌现),调整其中一种材料的能力(增强),或共享功能(接近)。我们的磁性材料的范围是有限的;只有金属铁,镍和钴在室温下显示自发磁有序。在这里,我们使用分子界面来产生Stoner标准之外的新型磁体,以控制薄膜的自旋特性并添加功能。从基本的角度来看,由于界面的复杂性,所涉及的材料及其复杂的量子电子特性,这些效应的起源并没有得到充分的解释。该方案的科学构想是:一、建立一个新的理论框架来研究磁-分子耦合和界面,解释在金属和分子之间耦合中起作用的许多物理因素。这些因素包括,可能在组合中,界面结构和弛豫,再杂化的程度和随后的电荷转移的出现和描述符的界面磁有序。利用奈米碳包覆层改善常用磁性薄膜之性质。磁性材料在计算、传感器、电力转换和发电、信号传输和许多其他技术中发挥着关键作用。通过3d铁磁体和/或其他金属(例如FeNi、FeCoB)之间的合金化、通过与稀土(例如SmCo和NdFeB)组合、使用高自旋轨道耦合界面(例如Co/Pt)或使用氧化物以实现绝缘亚铁磁体(例如YIG)来实现期望性质的调谐。这些策略可以导致宽范围的磁各向异性、双折射率和电导率。然而,一些功能,如磁性的电控制,半导体和磁性的组合或提高磁性元件的阻断温度仍然是难以捉摸的。此外,磁性和自旋电子学中使用的一些材料昂贵,对环境有害和/或难以回收。另一方面,分子界面利用丰富的生态友好材料来带来新的或增强的自旋功能。这样的机会包括在dia/顺磁金属中产生自旋有序,控制结晶度(软化/硬化),增加纳米结构的有序温度,操纵磁化轴,以及通过调整自旋轨道耦合来改善自旋扭矩器件的性能。三.通过使用电场打开/关闭界面自旋有序来创造可切换磁性的机会。在磁存储器等应用中需要完全稳定的自旋有序。然而,能够打开和关闭样品的磁响应将开辟新的研究和应用途径,从未来的高频超导电子和量子比特到亚波长光存储器的设计。金属-分子界面的性质高度依赖于电荷转移和再杂化。因此,电或光照射可以用来控制它们的磁响应。自旋有序和极化电子转移的结果并不局限于磁性材料及其用途。电荷转移是一个基本的化学和生物化学过程,在自旋相关的金属分子耦合的研究也可以在未来有助于其他领域的科学,如电化学能量存储,电催化,和使用的金属在生物医学应用,如医学成像。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning the magnetic properties of Fe thin films with RF-sputtered amorphous carbon
用射频溅射非晶碳调节铁薄膜的磁性能
Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces.
  • DOI:
    10.1021/acsnano.3c00247
  • 发表时间:
    2023-03-28
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Bhandary, Sumanta;Poli, Emiliano;Teobaldi, Gilberto;O'Regan, David D.
  • 通讯作者:
    O'Regan, David D.
Theoretical perspective on the modification of the magnetocrystalline anisotropy at molecule-cobalt interfaces
  • DOI:
    10.1103/physrevmaterials.7.064409
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Anita Halder;S. Bhandary;D. O'Regan;S. Sanvito;A. Droghetti
  • 通讯作者:
    Anita Halder;S. Bhandary;D. O'Regan;S. Sanvito;A. Droghetti
Reconciling the theoretical and experimental electronic structure of NbO2
协调 NbO2 的理论和实验电子结构
  • DOI:
    10.48550/arxiv.2311.16469
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berman S
  • 通讯作者:
    Berman S
Self-energy self-consistent density functional theory plus dynamical mean field theory
自能自洽密度泛函理论加动力平均场理论
  • DOI:
    10.1103/physrevb.103.245116
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bhandary S
  • 通讯作者:
    Bhandary S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oscar Cespedes其他文献

emCHRNA6/em RNA In Situ Hybridization Is a Useful Tool for the Diagnosis of Extraskeletal Myxoid Chondrosarcoma
EMCHRNA6/EM RNA原位杂交是用于诊断外部骨外软骨肉瘤的有用工具
  • DOI:
    10.1016/j.modpat.2024.100464
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Ben W. Dulken;Leandra Kingsley;Sabrina Zdravkovic;Oscar Cespedes;Xiaohua Qian;David I. Suster;Gregory W. Charville
  • 通讯作者:
    Gregory W. Charville
Monitoring Ionic Diffusion from CoB in Molecular layers
监测分子层中 CoB 的离子扩散
Epitaxial growth and magnetic properties of Mn5(SixGe1-x)3 thin films
Mn5(SixGe1-x)3薄膜的外延生长及磁性能
  • DOI:
    10.1016/j.tsf.2024.140338
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Sueyeong Kang;M. Petit;V. Heresanu;Alexandre Alti'e;Thomas Beaujard;Ganael Bon;Oscar Cespedes;Brian Hickey;L. Michez
  • 通讯作者:
    L. Michez
A novel highly osmotic K/Fesub3/subOsub4/sub/CNF magnetic draw solution for salty water desalination
一种用于咸水淡化的新型高渗透性 K/Fe₃O₄/CNF 磁性汲取溶液
  • DOI:
    10.1016/j.desal.2022.115903
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Aondohemba Aende;Jabbar Gardy;Zabeada Aslam;Matthew Rogers;Mohamed Edokali;Oscar Cespedes;David Harbottle;Ali Hassanpour
  • 通讯作者:
    Ali Hassanpour
The impact of whole-molecule disorder on spin-crossover in a family of isomorphous molecular crystals
全分子无序对同构分子晶体家族中自旋交叉的影响
  • DOI:
    10.1039/d5sc00090d
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Holly E. Sephton;Rhiannon L. Watson;Namrah Shahid;Hari Babu Vasili;Daniel L. Baker;Dipankar Saha;Izar Capel Berdiell;Christopher M. Pask;Oscar Cespedes;Malcolm A. Halcrow
  • 通讯作者:
    Malcolm A. Halcrow

Oscar Cespedes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oscar Cespedes', 18)}}的其他基金

ElecREDEEM-electrocat: Rethinking Electrode Design - Emergent Electronic and Magnetic effects in electrocatalysis
ElecREDEEM-electriccat:重新思考电极设计 - 电催化中出现的电子和磁效应
  • 批准号:
    EP/V047752/1
  • 财政年份:
    2021
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
INSPIRE Physical Sciences: A synergy for next generation materials science
INSPIRE 物理科学:下一代材料科学的协同作用
  • 批准号:
    EP/K036408/1
  • 财政年份:
    2013
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
Multidisciplinary extreme magnetometry: State of the art magnetometry for physical, chemical, biological and engineering applications.
多学科极限磁力测量:用于物理、化学、生物和工程应用的最先进的磁力测量。
  • 批准号:
    EP/K00512X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
Phonon gated electronics: Changing the electrical transport in molecular devices with vibrations generated via magnetic power absorption
声子门控电子器件:通过磁功率吸收产生的振动改变分子器件中的电传输
  • 批准号:
    EP/I010238/1
  • 财政年份:
    2011
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant

相似国自然基金

致病疫霉RxLR效应蛋白SFI7抑制马铃薯ETI免疫反应的分子机制研究
  • 批准号:
    31800134
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
马铃薯致病疫霉RXLR效应蛋白SFI5在抑制番茄MTI早期反应中分子机制的研究
  • 批准号:
    31701862
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
黔北农村留守学龄儿童意外伤害特征及SFI干预模式研究
  • 批准号:
    81160350
  • 批准年份:
    2011
  • 资助金额:
    53.0 万元
  • 项目类别:
    地区科学基金项目
Sfi1p蛋白在面包酵母SPB复制及SPB相关细胞过程中的作用研究
  • 批准号:
    30771108
  • 批准年份:
    2007
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
  • 批准号:
    EP/X039757/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
  • 批准号:
    2888667
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Studentship
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
  • 批准号:
    2888844
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Studentship
EPSRC-SFI: "CFT and Gravity: Heavy States and Black Holes"
EPSRC-SFI:“CFT 和重力:重态和黑洞”
  • 批准号:
    EP/W019663/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC-SFI: Krylov subspace methods for non-symmetric PDE problems: a deeper understanding and faster convergence
EPSRC-SFI:非对称 PDE 问题的 Krylov 子空间方法:更深入的理解和更快的收敛
  • 批准号:
    EP/W035561/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Research Grant
EPSRC & SFI CDT in Sustainable Chemistry - Year 1
电力系统研究委员会
  • 批准号:
    2888671
  • 财政年份:
    2023
  • 资助金额:
    $ 82.62万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了