Phonon gated electronics: Changing the electrical transport in molecular devices with vibrations generated via magnetic power absorption
声子门控电子器件:通过磁功率吸收产生的振动改变分子器件中的电传输
基本信息
- 批准号:EP/I010238/1
- 负责人:
- 金额:$ 14.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The size and speed of electronic appliances have improved exponentially in the last few decades thanks to the advances in materials science and fabrication processes. Nonetheless, these ever smaller and faster components are pushing at the fundamental boundaries of quantum mechanics, which will soon result in excessive heating, defective elements and/or impaired processing. Furthermore, performance limitations are not the only problem for conventional electronics. There is an increasing concern about the environmental and health repercussions for a society that depends on electronics in almost every aspect of our life, with an ever-expanding product range and market base. Many of the materials used in electronic devices are harmful, and the wasteful methods employed for their fabrication, together with the unstoppable updating of electronic gadgets every few years mean that large amounts of hazardous waste is produced.Molecular electronics has the advantages over conventional semiconducting devices of small intrinsic size and potentially biodegradable components. However, the research has so far focused in emulating the operation of standard devices and p-n junctions, rather than developing new functionalities based on the unique properties of molecular structures. Added to metal-molecular contact problems, and the chemical and structural degradation that organic structures undergo during operation, molecular devices still lag the efficiency and durability of conventional structures. Therefore, the electronics industry cannot profit from adopting a new generation of hybrid electronics. This project aims to address these drawbacks by using the intrinsic properties of molecules and molecular dynamics, instead of mimicking semiconductor devices.To bring molecular electronics to fruition as an independent field with intrinsic features, a qualitative conceptual step in hybrid electronics is required. Molecular dynamics, where the atoms vibrate at a characteristic frequency due to the thermal energy, are usually considered a nuisance for molecular devices aiming to emulate semiconducting structures. However, the rich range of vibrational properties in molecules, from low-frequency breathing modes to ultrafast hydrogen bond vibrations, is an attractive possibility to develop new paradigms if we could generate or even artificially control the vibrations at chosen chemical bonds without changing the macroscopic temperature. For this purpose, we can use the power dissipated by magnetic materials during exposure to alternating magnetic fields to generate or quench normal modes in molecules functionalized to, or in contact with the magnet. This power is dependent on an external DC magnetic field, the frequency of the AC magnetic field and the magnetic anisotropy, parameters which can be controlled by external fields or modifying the material composition or shape. This will allow us to study the interaction between electronic transport and molecular dynamics by having control over both voltage andvibrational spectrum.From the point of view of applications to electronic devices, rather than just changing the temperature of the system, the method I put forward will not be hampered by the long relaxation times associated with structural changes in the molecules and the macroscopic cooling of the electrodes. This is because the phonons will be injected directly to the molecules through a third insulating magnetic terminal not in contact with the electrodes. As compared with simply irradiating the molecules with microwave fields, the technique will also allow us to overcome the low microwave absorption of organic molecules, and extend the operation to arbitrary molecular systems, where we will generate vibrational modes in the optical range with exposure to microwave fields. We can then fabricate transistors operating at the molecular scale and with driving magnetic fields at frequencies of several GHz.
由于材料科学和制造工艺的进步,过去几十年来,电子设备的尺寸和速度呈指数级提高。尽管如此,这些更小、更快的组件正在突破量子力学的基本边界,这很快就会导致过度加热、元件缺陷和/或处理受损。此外,性能限制并不是传统电子产品的唯一问题。人们越来越关注我们生活的几乎各个方面都依赖电子产品、产品范围和市场基础不断扩大的社会对环境和健康的影响。电子设备中使用的许多材料都是有害的,其制造过程中所采用的浪费方法,加上电子设备每隔几年不断更新,意味着会产生大量危险废物。与传统半导体器件相比,分子电子器件具有固有尺寸小和潜在可生物降解成分的优势。然而,迄今为止的研究重点是模拟标准器件和 p-n 结的操作,而不是基于分子结构的独特性质开发新功能。除了金属-分子接触问题以及有机结构在运行过程中经历的化学和结构降解之外,分子器件的效率和耐用性仍然落后于传统结构。因此,电子行业无法从采用新一代混合电子产品中获利。该项目旨在通过利用分子和分子动力学的内在特性来解决这些缺点,而不是模仿半导体器件。为了使分子电子学成为具有内在特征的独立领域,需要在混合电子学中采取定性概念步骤。分子动力学,其中原子由于热能而以特征频率振动,通常被认为对于旨在模拟半导体结构的分子设备来说是一个麻烦。然而,如果我们能够在不改变宏观温度的情况下生成甚至人为控制所选化学键的振动,那么分子中丰富的振动特性(从低频呼吸模式到超快氢键振动)是开发新范例的有吸引力的可能性。为此,我们可以利用磁性材料在暴露于交变磁场期间耗散的功率来在功能化到磁体或与磁体接触的分子中产生或淬灭正常模式。该功率取决于外部直流磁场、交流磁场的频率和磁各向异性,这些参数可以通过外部场控制或修改材料成分或形状。这将使我们能够通过控制电压和振动谱来研究电子输运和分子动力学之间的相互作用。从电子器件应用的角度来看,我提出的方法不仅仅是改变系统的温度,而且不会受到与分子结构变化和电极宏观冷却相关的长弛豫时间的阻碍。这是因为声子将通过不与电极接触的第三绝缘磁性端子直接注入到分子中。与简单地用微波场照射分子相比,该技术还将使我们能够克服有机分子的低微波吸收性,并将操作扩展到任意分子系统,在该系统中,我们将在暴露于微波场的情况下产生光学范围内的振动模式。然后,我们可以制造在分子尺度上运行并以几 GHz 频率驱动磁场的晶体管。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.
- DOI:10.1039/c6nr04045d
- 发表时间:2016-08
- 期刊:
- 影响因子:6.7
- 作者:Sunjie Ye;F. Benz;M. Wheeler;Joseph Oram;J. Baumberg;O. Cespedes;H. Christenson;P. Coletta;L. Jeuken;Alexander F. Markham;K. Critchley;S. Evans
- 通讯作者:Sunjie Ye;F. Benz;M. Wheeler;Joseph Oram;J. Baumberg;O. Cespedes;H. Christenson;P. Coletta;L. Jeuken;Alexander F. Markham;K. Critchley;S. Evans
Developing Hollow-Channel Gold Nanoflowers as Trimodal Intracellular Nanoprobes.
- DOI:10.3390/ijms19082327
- 发表时间:2018-08-08
- 期刊:
- 影响因子:5.6
- 作者:Ye S;Wheeler MC;McLaughlan JR;Tamang A;Diggle CP;Cespedes O;Markham AF;Coletta PL;Evans SD
- 通讯作者:Evans SD
Effects of spin doping and spin injection in the luminescence and vibrational spectrum of C60
- DOI:10.1063/1.4885336
- 发表时间:2014-07-14
- 期刊:
- 影响因子:4
- 作者:Moorsom, Timothy;Wheeler, May;Cespedes, Oscar
- 通讯作者:Cespedes, Oscar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Cespedes其他文献
emCHRNA6/em RNA In Situ Hybridization Is a Useful Tool for the Diagnosis of Extraskeletal Myxoid Chondrosarcoma
EMCHRNA6/EM RNA原位杂交是用于诊断外部骨外软骨肉瘤的有用工具
- DOI:
10.1016/j.modpat.2024.100464 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.500
- 作者:
Ben W. Dulken;Leandra Kingsley;Sabrina Zdravkovic;Oscar Cespedes;Xiaohua Qian;David I. Suster;Gregory W. Charville - 通讯作者:
Gregory W. Charville
Monitoring Ionic Diffusion from CoB in Molecular layers
监测分子层中 CoB 的离子扩散
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Roe;Andrew J. Caruana;S. Langridge;C. Kinane;Oscar Cespedes - 通讯作者:
Oscar Cespedes
Epitaxial growth and magnetic properties of Mn5(SixGe1-x)3 thin films
Mn5(SixGe1-x)3薄膜的外延生长及磁性能
- DOI:
10.1016/j.tsf.2024.140338 - 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Sueyeong Kang;M. Petit;V. Heresanu;Alexandre Alti'e;Thomas Beaujard;Ganael Bon;Oscar Cespedes;Brian Hickey;L. Michez - 通讯作者:
L. Michez
A novel highly osmotic K/Fesub3/subOsub4/sub/CNF magnetic draw solution for salty water desalination
一种用于咸水淡化的新型高渗透性 K/Fe₃O₄/CNF 磁性汲取溶液
- DOI:
10.1016/j.desal.2022.115903 - 发表时间:
2022-09-15 - 期刊:
- 影响因子:9.800
- 作者:
Aondohemba Aende;Jabbar Gardy;Zabeada Aslam;Matthew Rogers;Mohamed Edokali;Oscar Cespedes;David Harbottle;Ali Hassanpour - 通讯作者:
Ali Hassanpour
The impact of whole-molecule disorder on spin-crossover in a family of isomorphous molecular crystals
全分子无序对同构分子晶体家族中自旋交叉的影响
- DOI:
10.1039/d5sc00090d - 发表时间:
2025-04-30 - 期刊:
- 影响因子:7.400
- 作者:
Holly E. Sephton;Rhiannon L. Watson;Namrah Shahid;Hari Babu Vasili;Daniel L. Baker;Dipankar Saha;Izar Capel Berdiell;Christopher M. Pask;Oscar Cespedes;Malcolm A. Halcrow - 通讯作者:
Malcolm A. Halcrow
Oscar Cespedes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oscar Cespedes', 18)}}的其他基金
ElecREDEEM-electrocat: Rethinking Electrode Design - Emergent Electronic and Magnetic effects in electrocatalysis
ElecREDEEM-electriccat:重新思考电极设计 - 电催化中出现的电子和磁效应
- 批准号:
EP/V047752/1 - 财政年份:2021
- 资助金额:
$ 14.18万 - 项目类别:
Research Grant
EPSRC-SFI: Emergent Magnetism and Spin Interactions in Metallo-Molecular Interfaces
EPSRC-SFI:金属分子界面中的新兴磁性和自旋相互作用
- 批准号:
EP/S030263/1 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Research Grant
INSPIRE Physical Sciences: A synergy for next generation materials science
INSPIRE 物理科学:下一代材料科学的协同作用
- 批准号:
EP/K036408/1 - 财政年份:2013
- 资助金额:
$ 14.18万 - 项目类别:
Research Grant
Multidisciplinary extreme magnetometry: State of the art magnetometry for physical, chemical, biological and engineering applications.
多学科极限磁力测量:用于物理、化学、生物和工程应用的最先进的磁力测量。
- 批准号:
EP/K00512X/1 - 财政年份:2012
- 资助金额:
$ 14.18万 - 项目类别:
Research Grant
相似国自然基金
钙离子不依赖电压依赖型分泌及其内吞的分子机制研究
- 批准号:30970660
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
损伤和修复过程中皮层神经元钙稳态调控机制研究
- 批准号:30670500
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Electronics out of thin air: MAGIC - Metal–Air Gated Integrated Circuits
凭空产生的电子产品:MAGIC - 金属-空气门控集成电路
- 批准号:
DP200100126 - 财政年份:2020
- 资助金额:
$ 14.18万 - 项目类别:
Discovery Projects
Wireless Magnetomechanical Neuromodulation of Targeted Circuits
目标电路的无线磁力神经调节
- 批准号:
9924842 - 财政年份:2020
- 资助金额:
$ 14.18万 - 项目类别:
CAREER: Scaling Electrolytes to a Single Monolayer for Low-Power Ion-Gated Electronics with Unconventional Characteristics
职业:将电解质缩放为单层,用于具有非常规特性的低功耗离子门控电子产品
- 批准号:
1847808 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Continuing Grant
Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain
用于人脑功能成像的时间选通漫相关光谱
- 批准号:
10022331 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain
用于人脑功能成像的时间选通漫相关光谱
- 批准号:
10455544 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain
用于人脑功能成像的时间选通漫相关光谱
- 批准号:
10254308 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Time-Gated Diffuse Correlation Spectroscopy for functional imaging of the human brain
用于人脑功能成像的时间选通漫相关光谱
- 批准号:
10683210 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
Technology Development for Biological Imaging with XFELs
XFEL 生物成像技术开发
- 批准号:
10654727 - 财政年份:2016
- 资助金额:
$ 14.18万 - 项目类别: