Mirror Constructions: Develop, Unify, Apply
镜像结构:开发、统一、应用
基本信息
- 批准号:EP/S03062X/1
- 负责人:
- 金额:$ 29.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, we research geometric problems inspired by string theory. In string theory, we view subatomic particles as strings, not points, requiring the universe to have six extra small dimensions called a Calabi-Yau shape. If we trace the string as it moves through time, it creates a (Riemann) surface. String theory has predicted amazing mathematics, which we, as mathematicians, prove rigorously.We are mainly focussed on studying shapes that can be viewed as the solution to a set of polynomial equations. Chosen with the correct data, such a system of equations can be used to define a Calabi-Yau shape. String theory predicts a duality that states that, for any Calabi-Yau space, there exists another space called the mirror. Various physical and geometric data between these two shapes is exchanged, creating a relationship that has come to be known as mirror symmetry. A key problem in this field is how one, given the Calabi-Yau space, finds the mirror space that is related to it. Once an explicit construction is developed, we then can check if a mirror relationship holds. There are various constructions in the literature with varying degrees of evidence of mirror symmetry; however, they often disagree! We aim in this project to deal with this discrepancy, unifying their approaches. In the same vein, we aim to potentially create new Calabi-Yau varieties while also giving their mirror shape, adding to the library of mirror pairs that currently exist.While Calabi-Yau spaces are often very difficult to visualize, they often have algebraic descriptions that are easy to study. In this project, we often will deform the Calabi-Yau shape so much that it is no longer even a Calabi-Yau space but some easier algebraic structure, known in the physics literature as a Landau-Ginzburg model. By proving relations between Landau-Ginzburg models, we will often find relations between Calabi-Yau shapes themselves. Thus, we will be able to relate various constructions algebraically in order to create a better overview of mirror proposals. Indeed, this explains the discrepancy above between different constructions for mirrors in the literature.In addition, we will study the algebraic relations to Landau-Ginzburg models in order to create new relations between Fano manifolds. While there is a large project regarding classification of Fano manifolds in low dimension, they often have the same interesting or intrinsic piece of algebraic structure, known as a (fractional) Calabi-Yau category. We aim to apply our intuition from unifying constructions in order to find relations between this fundamental data in order to streamline the relations between potential Fano manifolds. Lastly, we apply our understanding of the geometry of various Calabi-Yau spaces to computational number theory. The one-dimensional case of a Calabi-Yau shape, the elliptic curve, has played a leading role in cryptography in the last few decades; however, there have been recent proposals that have led to needing more understanding of higher dimensions. By interacting with computational number theorists, we will isolate fundamental Calabi-Yau shapes that exhibit interesting explicit number-theoretic phenomena, leading to applications for L-series.
在这个项目中,我们研究几何问题的启发弦理论。在弦理论中,我们把亚原子粒子看作弦,而不是点,这就要求宇宙有六个额外的小维度,称为卡-丘形状。如果我们追踪弦在时间中的运动,它会创建一个(黎曼)曲面。弦理论预言了惊人的数学,我们作为数学家,严格证明了这一点。我们主要关注于研究可以被视为一组多项式方程的解的形状。选择正确的数据,这样的方程组可以用来定义卡-丘形状。弦论预言了一种对偶性,即对于任何卡-丘空间,都存在另一个称为镜像的空间。这两个形状之间的各种物理和几何数据交换,创造了一种被称为镜像对称的关系。这个领域的一个关键问题是,给定卡-丘空间,如何找到与之相关的镜像空间。一旦一个显式构造被开发出来,我们就可以检查镜像关系是否成立。在文献中有各种各样的结构,它们都有不同程度的镜像对称的证据;然而,它们往往不一致!我们在这个项目中的目标是处理这种差异,统一他们的方法。同样,我们的目标是创造新的Calabi-Yau簇,同时赋予它们镜像的形状,增加现有的镜像对库。虽然Calabi-Yau空间通常很难可视化,但它们通常具有易于研究的代数描述。在这个项目中,我们经常会使卡-丘形状变形得如此之大,以至于它甚至不再是卡-丘空间,而是某种更简单的代数结构,在物理学文献中称为朗道-金兹伯格模型。通过证明Landau-Ginzburg模型之间的关系,我们经常会发现Calabi-Yau形状之间的关系。因此,我们将能够用代数方法将各种结构联系起来,以便更好地概述镜像建议。事实上,这解释了上述文献中不同镜像结构之间的差异。此外,我们将研究Landau-Ginzburg模型的代数关系,以建立Fano流形之间的新关系。虽然有一个关于低维Fano流形分类的大型项目,但它们通常具有相同的有趣或内在的代数结构,称为(分数)Calabi-Yau范畴。我们的目标是应用我们的直觉,从统一的建设,以找到这些基本数据之间的关系,以简化潜在的法诺流形之间的关系。最后,我们将对各种卡-丘空间几何的理解应用于计算数论。在过去的几十年里,卡-丘形状的一维情况,即椭圆曲线,在密码学中发挥了主导作用;然而,最近的一些建议导致需要更多地了解更高的维度。通过与计算数论学家的互动,我们将隔离基本的卡-丘形状,表现出有趣的显式数论现象,导致L系列的应用。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fano schemes of complete intersections in toric varieties
- DOI:10.1007/s00209-021-02809-4
- 发表时间:2019-10
- 期刊:
- 影响因子:0.8
- 作者:N. Ilten;Tyler L. Kelly
- 通讯作者:N. Ilten;Tyler L. Kelly
A maximally-graded invertible cubic threefold that does not admit a full exceptional collection of line bundles
最大分级可逆立方三重,不允许线束的完整异常集合
- DOI:10.1017/fms.2020.44
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Favero D
- 通讯作者:Favero D
Multiplicative preprojective algebras of Dynkin quivers
Dynkin 箭袋的乘法原射代数
- DOI:10.1016/j.jpaa.2022.107146
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Kaplan D
- 通讯作者:Kaplan D
Exceptional collections for mirrors of invertible polynomials
可逆多项式镜像的特殊集合
- DOI:10.1007/s00209-023-03258-x
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Favero D
- 通讯作者:Favero D
Open FJRW Theory and Mirror Symmetry
开放式 FJRW 理论和镜像对称
- DOI:10.48550/arxiv.2203.02435
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gross M
- 通讯作者:Gross M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler Kelly其他文献
Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability?
沿着花卉资源的梯度调查蜜蜂的饮食偏好:资源使用如何与资源可用性保持一致?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
Tyler Kelly;E. Elle - 通讯作者:
E. Elle
Linked fluvial and aeolian processes fertilize Australian bioregions
相关的河流和风成过程为澳大利亚生物区提供了肥沃的土壤
- DOI:
10.1016/j.aeolia.2014.12.001 - 发表时间:
2015 - 期刊:
- 影响因子:3.3
- 作者:
E. Bui;A. Chappell;Tyler Kelly;G. McTainsh - 通讯作者:
G. McTainsh
Implications of a patent foramen ovale for environmental physiology and pathophysiology: do we know the ‘hole’ story?
环境生理学和病理生理学专利的含义:我们知道“洞”的故事吗?
- DOI:
10.1113/jp281108 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Lovering;Tyler Kelly;Kaitlyn G DiMarco;K. Bradbury;N. Charkoudian - 通讯作者:
N. Charkoudian
Blunted hypoxic pulmonary vasoconstriction in apnoea divers
呼吸暂停潜水员缺氧性肺血管收缩减弱
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Tyler Kelly;Courtney V Brown;Mohini Bryant;R. Lord;T. Dawkins;Aimee L Drane;J. Futral;O. Barak;Tanja Dragun;M. Stembridge;Boris Spajić;Ivan Drviš;Joseph W. Duke;P. Ainslie;G. Foster;Ž. Dujić;A. Lovering - 通讯作者:
A. Lovering
Closing the research-implementation gap using data science tools: a case study with pollinators of British Columbia
使用数据科学工具缩小研究与实施之间的差距:不列颠哥伦比亚省授粉昆虫的案例研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
L. Guzman;Tyler Kelly;L. Morandin;L. M’Gonigle;E. Elle - 通讯作者:
E. Elle
Tyler Kelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler Kelly', 18)}}的其他基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Research Grant
Open Mirror Geometry for Landau-Ginzburg Models
Landau-Ginzburg 模型的开放镜像几何结构
- 批准号:
MR/T01783X/1 - 财政年份:2020
- 资助金额:
$ 29.87万 - 项目类别:
Fellowship
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
- 批准号:
EP/N004922/2 - 财政年份:2018
- 资助金额:
$ 29.87万 - 项目类别:
Fellowship
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
- 批准号:
EP/N004922/1 - 财政年份:2015
- 资助金额:
$ 29.87万 - 项目类别:
Fellowship
相似海外基金
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
- 批准号:
2246355 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
The influence of typology and microvariation in L3: The case of the interplay of Cantonese, Mandarin and English in comparative constructions
三语中类型学和微观变化的影响:以粤语、普通话和英语在比较结构中相互作用为例
- 批准号:
2888744 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Studentship
Corpus and experimental studies on focus constructions in Sinhala
僧伽罗语焦点构式的语料库及实验研究
- 批准号:
23KJ0748 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the Constructions of Loneliness in Older Adults' Lived Experiences and Practices: An Ethnographic Inquiry
了解老年人生活经历和实践中孤独感的构成:民族志调查
- 批准号:
498011 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
- 批准号:
2246354 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
"Twisted Transfers": Discursive Constructions of Corruption in Ancient Greece and Rome
“扭曲的转移”:古希腊和罗马腐败的话语建构
- 批准号:
AH/T012838/2 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: New Constructions for Garbled Computation
协作研究:SaTC:核心:中:乱码计算的新结构
- 批准号:
2246353 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
Legal constructions of trans* subjectivity across empires: a comparative and connected study of British India and French Algeria
跨帝国跨*主体性的法律建构:英属印度和法属阿尔及利亚的比较和关联研究
- 批准号:
2881687 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Studentship
Making Sense of Primary School Homework: Mothers' constructions of homework, homework support and mothering
理解小学家庭作业:母亲对家庭作业的建构、家庭作业支持和母爱
- 批准号:
ES/Y010361/1 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Fellowship
Identification of prepositional constructions for pedagogical application in the teaching of Spanish as a second language
介词结构在西班牙语作为第二语言教学中的教学应用的识别
- 批准号:
2872518 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Studentship














{{item.name}}会员




