Open Mirror Geometry for Landau-Ginzburg Models
Landau-Ginzburg 模型的开放镜像几何结构
基本信息
- 批准号:MR/T01783X/1
- 负责人:
- 金额:$ 130.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This fellowship researches geometric problems made accessible by string theory. In string theory, one views subatomic particles as strings, not points, requiring the universe to have six extra small dimensions in the form of what is known as a Calabi-Yau shape. If we trace the string as it moves through time, it creates a (Riemann) surface. String theory has pointed out mathematical structure that we initially did not see. Now, mathematics informed by string theory has created great advances that has pushed the boundaries of geometry, algebra and even string theory itself.The most clear way in which string theory has revolutionised modern geometry is in enumerative geometry. An example of an enumerative problem is "How many lines in the cartesian plane go through two given points?" The answer is something we have known since secondary school: there's a unique straight line between two points. We now ask: "How many Riemann surfaces / strings (of a given degree or genus) are in a Calabi-Yau shape?" This is a classical problem in geometry, going back in some form to the 19th century. Such questions were the basis to Hilbert's 15th problem posed in 1900. Answering enumerative problems like this one helps us understand higher-dimensional spaces, a key problem for geometers. Here, we use modern ideas to tackle problems over a century old, while also studying contemporary variants.Today, we count Riemann surfaces by using dualities in string theory to encode the counts into multivariate integration. Such a relation is the manifestation of a field called mirror symmetry. This duality exchanges the data of two different Calabi-Yau shapes using different types of geometry: (1) the enumerative geometry that sits squarely in the field of symplectic geometry and (2) the multivariate integration which is placed in the field of algebraic geometry. The two Calabi-Yau shapes that have this exchange of data are called mirrors. Mirror symmetry has been one of the key catalysts of modern geometry for the past thirty years, and is only gaining momentum.A key question in mirror symmetry is: given a Calabi-Yau shape, how do I construct the mirror? More broadly, one can ask how to construct the mirror for any symplectic manifold and its deformations. In the past 10 years, there has been work in trying to understand how mirror symmetry works for all deformations of a given Calabi-Yau shape. Roughly speaking, when one deforms a Calabi-Yau shape too hard, one ends up with not a space anymore, but a complex-valued function known as a Landau-Ginzburg model. The geometry of the Calabi-Yau shape is now encapsulated in this function, where it is easier to compute. The analogous theory for counting Riemann surfaces for Landau-Ginzburg models, known as FJRW theory or quantum singularity theory, was developed in 2013; however, there is no systematic way in any large generality for how one can construct the mirror to a Landau-Ginzburg model.This fellowship aims to solve the key question above for Landau-Ginzburg models, providing a way to construct the mirror to a Landau-Ginzburg model directly. In effect, this will provide a more 'global' approach to constructing mirrors, allowing for one to study deformations of symplectic spaces more effectively.
这个奖学金研究几何问题的弦论。在弦理论中,人们把亚原子粒子看作弦,而不是点,这就要求宇宙有六个额外的小维度,以所谓的卡-丘形状的形式存在。如果我们追踪弦在时间中的运动,它会创建一个(黎曼)曲面。弦理论指出了我们最初没有看到的数学结构。现在,数学在弦理论的指导下取得了巨大的进步,推动了几何学、代数学甚至弦理论本身的发展,弦理论对现代几何学的革命最明显的方式就是枚举几何学。枚举问题的一个例子是“在笛卡尔平面上有多少条直线通过两个给定的点?“答案是我们从中学就知道的:两点之间有一条独特的直线。我们现在问:“有多少黎曼曲面/弦(给定度或亏格)是卡-丘形状的?“这是一个经典的几何问题,可以以某种形式追溯到世纪。这些问题是希尔伯特在1900年提出的第15个问题的基础。像这样的枚举问题有助于我们理解高维空间,这是几何学家的一个关键问题。在这里,我们使用现代的思想来解决世纪的问题,同时也研究当代的变体。今天,我们通过使用弦理论中的对偶来计算黎曼曲面,将计数编码为多元积分。这种关系是一种称为镜像对称的场的表现。这种对偶使用不同类型的几何交换两个不同卡-丘形状的数据:(1)位于辛几何领域的枚举几何和(2)位于代数几何领域的多元积分。有这种数据交换的两个卡-丘图形被称为镜像。镜像对称在过去的三十年里一直是现代几何的关键催化剂之一,并且只会越来越有动力。镜像对称的一个关键问题是:给定一个卡-丘形状,我如何构造镜像?更广泛地说,人们可以问如何构造任何辛流形及其变形的镜像。在过去的10年里,人们一直在努力理解镜像对称如何适用于给定卡-丘形状的所有变形。粗略地说,当一个卡-丘形状变形太厉害时,最终得到的不再是一个空间,而是一个复值函数,称为朗道-金兹伯格模型。卡-丘形状的几何体现在被封装在这个函数中,在那里它更容易计算。2013年,量子奇异性理论(FJRW theory)提出了计算朗道-金兹伯格模型的黎曼曲面的类似理论。然而,目前还没有系统的方法来构造朗道-金兹伯格模型的镜像。本研究旨在解决朗道-金兹伯格模型的上述关键问题,提供一种直接构造朗道-金兹伯格模型镜像的方法。实际上,这将提供一个更“全球”的方法来构建镜像,使人们能够更有效地研究辛空间的变形。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The orbifold Hochschild product for Fermat hypersurface
Fermat 超曲面的 orbifold Hochschild 产品
- DOI:10.1016/j.aim.2023.109186
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Huang S
- 通讯作者:Huang S
When are two HKR isomorphisms equal?
什么时候两个 HKR 同构相等?
- DOI:10.1016/j.aim.2023.109246
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Huang S
- 通讯作者:Huang S
Best practice for LGBTQ+ data collection by STEM organizations
STEM 组织收集 LGBTQ 数据的最佳实践
- DOI:10.1038/d41586-024-00298-z
- 发表时间:2024
- 期刊:
- 影响因子:64.8
- 作者:Bond A
- 通讯作者:Bond A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler Kelly其他文献
Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability?
沿着花卉资源的梯度调查蜜蜂的饮食偏好:资源使用如何与资源可用性保持一致?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
Tyler Kelly;E. Elle - 通讯作者:
E. Elle
Linked fluvial and aeolian processes fertilize Australian bioregions
相关的河流和风成过程为澳大利亚生物区提供了肥沃的土壤
- DOI:
10.1016/j.aeolia.2014.12.001 - 发表时间:
2015 - 期刊:
- 影响因子:3.3
- 作者:
E. Bui;A. Chappell;Tyler Kelly;G. McTainsh - 通讯作者:
G. McTainsh
Implications of a patent foramen ovale for environmental physiology and pathophysiology: do we know the ‘hole’ story?
环境生理学和病理生理学专利的含义:我们知道“洞”的故事吗?
- DOI:
10.1113/jp281108 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Lovering;Tyler Kelly;Kaitlyn G DiMarco;K. Bradbury;N. Charkoudian - 通讯作者:
N. Charkoudian
Blunted hypoxic pulmonary vasoconstriction in apnoea divers
呼吸暂停潜水员缺氧性肺血管收缩减弱
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Tyler Kelly;Courtney V Brown;Mohini Bryant;R. Lord;T. Dawkins;Aimee L Drane;J. Futral;O. Barak;Tanja Dragun;M. Stembridge;Boris Spajić;Ivan Drviš;Joseph W. Duke;P. Ainslie;G. Foster;Ž. Dujić;A. Lovering - 通讯作者:
A. Lovering
Closing the research-implementation gap using data science tools: a case study with pollinators of British Columbia
使用数据科学工具缩小研究与实施之间的差距:不列颠哥伦比亚省授粉昆虫的案例研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
L. Guzman;Tyler Kelly;L. Morandin;L. M’Gonigle;E. Elle - 通讯作者:
E. Elle
Tyler Kelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler Kelly', 18)}}的其他基金
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 130.14万 - 项目类别:
Research Grant
Mirror Constructions: Develop, Unify, Apply
镜像结构:开发、统一、应用
- 批准号:
EP/S03062X/1 - 财政年份:2019
- 资助金额:
$ 130.14万 - 项目类别:
Research Grant
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
- 批准号:
EP/N004922/2 - 财政年份:2018
- 资助金额:
$ 130.14万 - 项目类别:
Fellowship
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
- 批准号:
EP/N004922/1 - 财政年份:2015
- 资助金额:
$ 130.14万 - 项目类别:
Fellowship
相似海外基金
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 130.14万 - 项目类别:
Fellowship
Geometry of Mirror Symmetry
镜面对称的几何
- 批准号:
22K03296 - 财政年份:2022
- 资助金额:
$ 130.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gravitational Instantons, Mirror Symmetry, and Enumerative Geometry
引力瞬子、镜像对称和枚举几何
- 批准号:
2204109 - 财政年份:2022
- 资助金额:
$ 130.14万 - 项目类别:
Standard Grant
Mirror Symmetry, Birational Geometry, and Moduli.
镜像对称、双有理几何和模。
- 批准号:
2200875 - 财政年份:2022
- 资助金额:
$ 130.14万 - 项目类别:
Standard Grant
Fusion of Birational Geometry and Theory of Periods;Deepening and Exploration of Mirror Symmetry Mathematics
双有理几何与周期论的融合;镜面对称数学的深化与探索
- 批准号:
21H04994 - 财政年份:2021
- 资助金额:
$ 130.14万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Conference on Enumerative Geometry, Mirror Symmetry, and Physics
枚举几何、镜像对称和物理学会议
- 批准号:
1736228 - 财政年份:2017
- 资助金额:
$ 130.14万 - 项目类别:
Standard Grant
Deeper Understanding of Relations between Mirror Syemmetry and Geometry of Moduli Spaces
更深入地理解镜像对称与模空间几何之间的关系
- 批准号:
17K05214 - 财政年份:2017
- 资助金额:
$ 130.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fusion of Birational Geometry and Theory of Periods; A New Era for Studies of Mirror Symmetry
双有理几何与周期论的融合;
- 批准号:
16H06337 - 财政年份:2016
- 资助金额:
$ 130.14万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Homological mirror symmetry and tropical geometry
同调镜像对称和热带几何
- 批准号:
16H03930 - 财政年份:2016
- 资助金额:
$ 130.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




