Ultra-fast, ultra-small and ultra-dilute: an integrated understanding of conjugated polymers in solution across spatial and temporal scales

超快、超小和超稀释:跨空间和时间尺度溶液中共轭聚合物的综合理解

基本信息

  • 批准号:
    EP/T013729/1
  • 负责人:
  • 金额:
    $ 63.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Conjugated polymers are an important class of organic (carbon-based) semiconductor. They combine novel semiconducting electronic properties with simple fabrication of devices from solution. They enable the field of plastic electronics including flexible lighting, displays, solar cells and electronics. Their combination of flexibility, ability to interconvert electricity and light, and simple fabrication is very unusual and enables many applications. One of the most interesting features of these materials is that they are both semiconductors and soluble. This means they can be dissolved to make a solution and deposited by simple processes such as ink jet printing to make working electronic and optoelectronic devices (such as light sources and solar cells). The behaviour of conjugated polymers in solution is very complicated because each polymer consists of a chain of atoms that is ultra-small and flexible, and so can fold in a different way. A particular shape of the polymer is known as its conformation. The conformation of the polymer is not static and can change at ultra-fast timescales in solution. The properties of the material then depend on the conformations of the constituent polymer chains, and the structure of films of the material are strongly influenced by the conformation of the polymers in the solution used to make the film.The aim of this proposal is to achieve a breakthrough in our understanding of conjugated polymers in solution by developing and applying new measurement techniques. Remarkably it is now possible to study individual molecules, one at a time to see how they are different from each other. In contrast to these ultra-dilute conditions, most experiments just measure average properties. The difference between these approaches is huge - like the difference between knowing the average height of people is 165 cm and the actual height of every person. We have made the first measurements in the world of single conjugated polymers in solution, demonstrating the feasibility of the approach. We now aim to transform our understanding of conjugated polymers in solution by studying individual molecules over a very wide range of timescales and length scales. In addition, we will study the interactions between polymers and how they form aggregates in solution, which are also known to impact the conformation of the polymer and the properties of the material.This work will involve developing measurements of exceptional spatial and temporal resolution. By bridging the gap between ultra-dilute single-molecule methods in solution, ultra-fast pump-probe and ultra-small super-resolution imaging, the proposal will deliver a set of 'first of its kind techniques' that will give unprecedented insights into CP function. The proposal will provide, for the first time, a measurement of the structural heterogeneity and dynamics of CP chains in solution and a direct correlation between each conformation and its photophysical properties. This basic knowledge will lay the foundations for improved conjugated polymers and devices and empower a broad range of applications across material sciences.
共轭聚合物是一类重要的有机(基于碳)的半导体。他们将新型的半导体电子性质与简单制造溶液制造的设备结合在一起。它们使塑料电子设备的领域包括柔性照明,显示器,太阳能电池和电子产品。它们的柔韧性,互换电力和光线以及简单制造的能力结合在一起是非常不寻常的,并且可以实现许多应用。这些材料最有趣的特征之一是它们既是半导体又是可溶的。这意味着它们可以溶解以制造解决方案并通过简单的过程(例如墨水打印)沉积,以制造工作电子和光电设备(例如光源和太阳能电池)。溶液中共轭聚合物的行为非常复杂,因为每种聚合物都由一个超小和柔韧性的原子链组成,因此可以以不同的方式折叠。聚合物的特定形状称为其构象。聚合物的构象不是静态的,并且可以在溶液中的超快速时间尺度上发生变化。然后,材料的特性取决于组成型聚合物链的构象,并且材料膜的结构受到用于制作膜的解决方案中聚合物的构象的强烈影响。该提案的目的是在我们对解决方案中的理解中的理解来实现通过开发和应用新的测量技术来实现突破性。值得注意的是,现在可以研究单个分子,一个人一次看到它们彼此之间的不同。与这些超稀释条件相反,大多数实验只是测量平均特性。这些方法之间的区别是巨大的 - 就像知道人的平均身高是165厘米和每个人的实际高度之间的区别。我们已经在溶液中的单个共轭聚合物的世界中进行了第一个测量,证明了该方法的可行性。现在,我们旨在通过研究在非常广泛的时间尺度和长度尺度上的单个分子来改变对溶液中共轭聚合物的理解。此外,我们将研究聚合物之间的相互作用及其在溶液中形成聚集体之间的相互作用,这些溶液也已知会影响聚合物的构象和材料的性质。这项工作将涉及制定特殊空间和时间分辨率的测量。通过弥合解决方案,超快速泵探针和超小分辨率成像的超稀释单分子方法之间的差距,该提案将提供一组“首先使用其类似技术”,从而为CP功能提供前所未有的见解。该提案将首次提供解决溶液中CP链的结构异质性和动力学的测量以及每个构象与其光物理特性之间的直接相关性。这些基本知识将奠定改进共轭聚合物和设备的基础,并赋予跨物质科学的广泛应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Penedo其他文献

Molecular Insights Into the Organization and Folding Dynamics of Metabolite-Sensing Riboswitches
  • DOI:
    10.1016/j.bpj.2010.11.056
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos Penedo;Daniel A. Lafontaine
  • 通讯作者:
    Daniel A. Lafontaine
Twin-FRET: A New Molecular Ruler for Biomolecules
  • DOI:
    10.1016/j.bpj.2018.11.3036
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sankar Jana;Marta Diez-Castellnou;Euan R. Kay;Carlos Penedo
  • 通讯作者:
    Carlos Penedo

Carlos Penedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Penedo', 18)}}的其他基金

A correlative, ultra-stable, optical tweezers-confocal microscope for high-resolution molecular and cellular mechanobiology
用于高分辨率分子和细胞力学生物学的关联、超稳定光镊共聚焦显微镜
  • 批准号:
    BB/X019047/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Research Grant
Single-molecule studies of light-emitting polymers: observing and manipulating polymer conformation in solution
发光聚合物的单分子研究:观察和操纵溶液中的聚合物构象
  • 批准号:
    EP/N009886/1
  • 财政年份:
    2016
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Research Grant
Organization and function of structure-specific endonucleases: single-molecule studies of fluorescently labelled NER complexes
结构特异性核酸内切酶的组织和功能:荧光标记 NER 复合物的单分子研究
  • 批准号:
    BB/E014674/1
  • 财政年份:
    2007
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Research Grant

相似国自然基金

基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
  • 批准号:
    52378230
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
  • 批准号:
    LE240100036
  • 财政年份:
    2024
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Nanopore sensors for multiplexed, ultra-fast gene detection
用于多重、超快速基因检测的纳米孔传感器
  • 批准号:
    LP220200182
  • 财政年份:
    2023
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Linkage Projects
DCAD - Developing better diagnostics for Coronary Artery Disease with novel AI-enhanced, ultra fast proteomics
DCAD - 利用新型 AI 增强型超快速蛋白质组学开发更好的冠状动脉疾病诊断方法
  • 批准号:
    10072712
  • 财政年份:
    2023
  • 资助金额:
    $ 63.49万
  • 项目类别:
    Collaborative R&D
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
  • 批准号:
    10734956
  • 财政年份:
    2023
  • 资助金额:
    $ 63.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了