A correlative, ultra-stable, optical tweezers-confocal microscope for high-resolution molecular and cellular mechanobiology

用于高分辨率分子和细胞力学生物学的关联、超稳定光镊共聚焦显微镜

基本信息

  • 批准号:
    BB/X019047/1
  • 负责人:
  • 金额:
    $ 81.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The roles played by mechanical forces manifest across of biological scales, from the nanometre-size structural changes observed in proteins to the large-scale relaxation and contraction phenomena happening in muscle tissue that allows body movement. There is mounting evidence that these forces have a fundamental role in a myriad of molecular and cellular processes. Unfortunately, biological forces cannot be investigated using tools such as NMR, circular dichroism, fluorescence spectroscopy, X-ray crystallography or cryo-EM, simply because these methods cannot measure the magnitude and location of the forces and cannot apply mechanical stress to replicate molecular or cellular mechanical conditions. However, recent technical advances using optical tweezers (OT) are giving unprecedented access to what these biological forces do and how they do it. This proposal relates to the purchasing of a LUMICKS C-trap correlative imaging microscope that combines OT for mechanical manipulation with simultaneous fluorescence imaging using confocal microscopy. Combining both elements with a multi-channel microfluidic device to alter conditions in real time provides a highly versatile and unique tool for nano-mechanics. OT use a tightly focused beam of light to trap a micrometre-size spherical object (a bead), a cell organelle or an entire cell. Once trapped, the object can be held in place or moved by changing the beam position. To apply or sense forces at cellular level, the trapped bead is coated with 'glue-like' molecules such receptor or antibodies that will interact with the cell membrane thus providing a hook to apply forces at specific locations. At molecular level, proteins, nucleic acids, and multi-subunit complexes can be tethered between two trapped beads. By altering the distance between them is possible to apply stretching forces or sense changes in bead(s) position from which to extract information about structure, folding, dynamics, interactions, and biological function. At molecular level, the C-trap capabilities offer an endless range of applications, and the team will use them to investigate the mechanobiology of DNA replication, recombination, repair, packaging, RNA folding and regulation, CRISPR-based editing and to understand the effect of mechanical stress in the function of proteins involved in bacterial, viral and parasite infection. At cellular level, applying local forces to distort membrane curvature will enable to determine the impact of mechanical stress in receptor signalling, microtubule dynamics, polarized trafficking, invadopodia formation in cancer cells and the function of mechanosensitive protein channels. OT is also revolutionizing plant cells biology and the team will use it to evaluate how force remodels membrane-contacts, membrane-constricting sites, protein-protein interactions and the conformation of receptors involved in the plant defence system.Although the technology is being quickly and widely adopted worldwide, there is no confocal C-trap microscope in Scotland (and North England). In this proposal, we have put together a broad range of research projects to showcase the transformative impact that this instrument will have across the participating groups, giving access to information otherwise inaccessible. We have designed a program of training and support to integrate the C-trap with existing capabilities across the partner institutions and ensure its long-term sustainability. To facilitate access to the wider bioscience community, promote new science and collaborations, we will operate in a 'donated time' format during a three-year period. In summary, the LUMICKS C-trap system is a state-of-the-art 'turn-key' multi-user, multi-project equipment that will increase imaging capability in Scotland and will enable a deeper understanding of fundamental biological processes related to cancer, ageing, and infection pathways that are part of the BBSRC Forward Look for Bioscience strategy
机械力所扮演的角色体现在生物尺度上,从在蛋白质中观察到的纳米级结构变化到肌肉组织中发生的允许身体运动的大规模松弛和收缩现象。越来越多的证据表明,这些力量在无数的分子和细胞过程中起着重要作用。不幸的是,生物力不能使用核磁共振、圆二色性、荧光光谱、x射线晶体学或冷冻电镜等工具进行研究,因为这些方法不能测量力的大小和位置,也不能应用机械应力来复制分子或细胞的机械条件。然而,最近使用光学镊子(OT)的技术进步使人们前所未有地了解这些生物力量的作用以及它们是如何做到的。本提案涉及购买LUMICKS C-trap相关成像显微镜,该显微镜将OT用于机械操作与使用共聚焦显微镜的同步荧光成像相结合。将这两个元素与多通道微流体装置相结合,实时改变条件,为纳米力学提供了一个高度通用和独特的工具。OT使用一束紧密聚焦的光来捕获一个微米大小的球形物体(一个头),一个细胞器或整个细胞。一旦被困住,可以通过改变光束的位置来固定或移动物体。为了在细胞水平上施加或感知力,被捕获的珠子被涂上“胶状”分子,如受体或抗体,它们将与细胞膜相互作用,从而提供一个钩子,在特定位置施加力。在分子水平上,蛋白质、核酸和多亚基复合物可以被拴在两个被困住的珠子之间。通过改变它们之间的距离,可以施加拉伸力或感知头部位置的变化,从中提取有关结构、折叠、动力学、相互作用和生物功能的信息。在分子水平上,C-trap功能提供了无限的应用范围,研究小组将利用它们来研究DNA复制、重组、修复、包装、RNA折叠和调控、基于crispr的编辑的机械生物学,并了解机械应力对细菌、病毒和寄生虫感染中蛋白质功能的影响。在细胞水平上,应用局部力扭曲膜曲率将能够确定机械应力对受体信号传导、微管动力学、极化运输、癌细胞内凹形成和机械敏感蛋白通道功能的影响。OT也在彻底改变植物细胞生物学,研究小组将利用它来评估力如何重塑膜接触、膜收缩位点、蛋白质-蛋白质相互作用以及参与植物防御系统的受体构象。尽管这项技术在世界范围内得到了迅速和广泛的应用,但在苏格兰(和北英格兰)还没有共聚焦C-trap显微镜。在这项建议中,我们汇集了一系列广泛的研究项目,以展示这一文书将对各参与群体产生的变革性影响,使他们能够获得以其他方式无法获得的信息。我们设计了一个培训和支持计划,将C-trap与合作机构的现有能力相结合,确保其长期可持续性。为了促进更广泛的生物科学界的获取,促进新的科学和合作,我们将在三年期间以“捐赠时间”的形式运作。总而言之,LUMICKS C-trap系统是最先进的“交钥匙”多用户、多项目设备,将提高苏格兰的成像能力,并使人们能够更深入地了解与癌症、衰老和感染途径相关的基本生物过程,这些都是BBSRC前瞻性生物科学战略的一部分

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Penedo其他文献

Twin-FRET: A New Molecular Ruler for Biomolecules
  • DOI:
    10.1016/j.bpj.2018.11.3036
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sankar Jana;Marta Diez-Castellnou;Euan R. Kay;Carlos Penedo
  • 通讯作者:
    Carlos Penedo
Molecular Insights Into the Organization and Folding Dynamics of Metabolite-Sensing Riboswitches
  • DOI:
    10.1016/j.bpj.2010.11.056
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos Penedo;Daniel A. Lafontaine
  • 通讯作者:
    Daniel A. Lafontaine

Carlos Penedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Penedo', 18)}}的其他基金

Ultra-fast, ultra-small and ultra-dilute: an integrated understanding of conjugated polymers in solution across spatial and temporal scales
超快、超小和超稀释:跨空间和时间尺度溶液中共轭聚合物的综合理解
  • 批准号:
    EP/T013729/1
  • 财政年份:
    2020
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Research Grant
Single-molecule studies of light-emitting polymers: observing and manipulating polymer conformation in solution
发光聚合物的单分子研究:观察和操纵溶液中的聚合物构象
  • 批准号:
    EP/N009886/1
  • 财政年份:
    2016
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Research Grant
Organization and function of structure-specific endonucleases: single-molecule studies of fluorescently labelled NER complexes
结构特异性核酸内切酶的组织和功能:荧光标记 NER 复合物的单分子研究
  • 批准号:
    BB/E014674/1
  • 财政年份:
    2007
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Research Grant

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Creation of ultra wavelength stable lasers using rare earth doped semiconductors
使用稀土掺杂半导体创建超波长稳定激光器
  • 批准号:
    23KJ1422
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mitochondrial Fidelity in Mammalian Neurons
哺乳动物神经元的线粒体保真度
  • 批准号:
    10592168
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
Ultra-Low-Cost and Highly-Stable Perovskite Solar Cells Based on Inorganic-Carbon Materials
基于无机碳材料的超低成本、高稳定性钙钛矿太阳能电池
  • 批准号:
    23KJ1175
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploration of the Molecular Weight-Dependent Properties of the Electron Transport Layer for the Ultra-Stable Organic Photodetectors
超稳定有机光电探测器电子传输层分子量依赖性特性的探索
  • 批准号:
    23K13373
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Uncovering the Roles of Chaperonin CCT in Neural Health and Disease.
揭示伴侣蛋白 CCT 在神经健康和疾病中的作用。
  • 批准号:
    10607652
  • 财政年份:
    2023
  • 资助金额:
    $ 81.84万
  • 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
  • 批准号:
    10707375
  • 财政年份:
    2022
  • 资助金额:
    $ 81.84万
  • 项目类别:
Towards precise focal activation of ultra-stable size isolated microbubbles in therapeutic focused ultrasound: Production, modelling and acoustic characterization
在治疗聚焦超声中实现超稳定尺寸孤立微泡的精确聚焦激活:生产、建模和声学表征
  • 批准号:
    568421-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Postdoctoral Fellowships
Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    2306177
  • 财政年份:
    2022
  • 资助金额:
    $ 81.84万
  • 项目类别:
    Standard Grant
Deep Analysis of Brain Chemistry at Enhanced Spatial and Temporal Resolution using Microscale Sampling and Analysis
使用微尺度采样和分析以增强的时空分辨率深入分析脑化学
  • 批准号:
    10515445
  • 财政年份:
    2022
  • 资助金额:
    $ 81.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了