Single-molecule studies of light-emitting polymers: observing and manipulating polymer conformation in solution
发光聚合物的单分子研究:观察和操纵溶液中的聚合物构象
基本信息
- 批准号:EP/N009886/1
- 负责人:
- 金额:$ 50.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A remarkable advance in modern science is the ability to detect the light emitted by single molecules. This achievement - the demonstration of the ultimate detection limit - lies at the heart of a new era of microscopy that is transforming our understanding of biological processes. The ability to pinpoint the exact location of a single dye molecule, quantify fluctuations in the emission of individual molecules or the possibility of stretching at will a single biopolymer are providing knowledge that before it was only possible to dream of. Whilst these techniques will continue to revolutionize biology, we now propose to apply them to give breakthroughs in materials science. The first aim of this proposal is to develop a toolbox of single-molecule techniques that offer for the first time the opportunity of observing and manipulating materials as depicted in the textbooks: molecule by molecule. We will use these techniques to make a pioneering breakthrough in linking the conformation of conjugated polymers in solution to their light-emitting properties. Understanding this relationship is crucial because a key advantage of these materials is that they can be processed into optoelectronic devices using simple deposition methods from solution. Conjugated polymers are very promising for organic light-emitting diode (OLED) displays as well as solar cells and transistors. The display of information - on mobile phones, televisions and monitors is very important for work, communication, entertainment and learning. Advances in display technology have been dramatic and some of the most attractive are OLEDs. To meet the growing technological opportunities, it is crucial to develop a deeper understanding of how the properties of conjugated polymers relate to their conformation. The conformation is the shape of the polymer and it has a huge effect on the optical properties but it is very difficult to study because every polymer chain has a different shape. We will overcome this problem by measuring single polymers in solution, and by developing techniques to mechanically manipulate the conformation of the polymer to identify how changes in shape alter its light emission properties. This is a pioneering area because single-molecule methods for non-aqueous environments are still in their infancy and our work will allow us to understand how the solvent affects polymer conformation and light emission with an unprecedented level of detail.Our second goal involves the novel concept in materials sciences of manipulating the polymer backbone using mechanical force whilst simultaneously monitoring its fluorescence properties. We will apply manipulation techniques to conjugated polymers for the first time. Stretching the polymer in a controlled manner will reveal the optical signature of different conformations (i.e. linear versus collapsed) enabling the emission properties to be related to the underlying shape of each individual polymer chain - information not available by any other technique. To achieve these goals, we have put together a team of leading scientists in key areas through a collaboration between St Andrews (polymer physics & single-molecule) and Strathclyde and UCSB to assist with the synthesis of novel orthogonally functionalized conjugated polymers. The proposal also benefits from a partnership with Cambridge Display Technology Limited (CDT, UK), the leading company in polymer LED technology, that will help us to efficiently translate our findings into technological advances. Our project partners at the University of Leipzig will assist with the integration of mechanical manipulation into our single-molecule fluorescence microscopes. Our results will not only advance the field of polymer LEDs, but also other polymer optoelectronic areas such as lasers and solar cells, and the wider fields of polymer and materials science.
现代科学的一个显着进步是检测单分子发出的光的能力。这一成就 - 最终检测极限的演示 - 是显微镜新时代的核心,正在改变我们对生物过程的理解。能够查明单个染料分子确切位置的能力,量化单个分子排放中的波动,或者在将单个生物聚合物伸展的可能性提供了只有在才能做梦之前提供的知识。尽管这些技术将继续彻底改变生物学,但我们现在建议将其应用它们以在材料科学方面取得突破。该提案的第一个目的是开发单分子技术的工具箱,该工具箱首次提供了观察和操纵材料的机会,如教科书中所示:分子分子。我们将使用这些技术在将共轭聚合物的构象与其发光特性联系起来时取得了开创性的突破。了解这种关系至关重要,因为这些材料的关键优势是可以使用解决方案中的简单沉积方法将它们处理到光电设备中。共轭聚合物对于有机发光二极管(OLED)显示以及太阳能电池和晶体管非常有前途。信息显示 - 手机,电视和监视器上的信息对于工作,沟通,娱乐和学习非常重要。展示技术的进步是戏剧性的,其中一些最具吸引力的是OLED。为了满足不断增长的技术机会,至关重要的是要深入了解共轭聚合物与它们的构象的关系。构象是聚合物的形状,它对光学特性具有巨大影响,但是很难研究,因为每个聚合物链的形状都不同。我们将通过测量溶液中的单个聚合物以及开发技术来机械操纵聚合物的构象以确定形状的变化如何改变其光发射特性,从而克服该问题。这是一个开创性的领域,因为非水环境的单分子方法仍处于起步阶段,我们的工作将使我们能够了解溶剂如何影响聚合物的构象和光发射,并以前所未有的详细程度。我们的第二个目标涉及使用机械效应的材料概念,而这些概念涉及使用机械效应的材料概念。我们将首次将操纵技术应用于共轭聚合物。以受控的方式拉伸聚合物将揭示不同构象的光学特征(即线性与塌陷),从而使发射特性与每个单独的聚合物链的潜在形状相关 - 任何其他技术都无法获得。为了实现这些目标,我们通过St Andrews(聚合物物理学和单分子)与Strathclyde和UCSB之间的合作来组建一个主要领域的领先科学家团队,以协助合成新型的正交功能化的共轭聚合物。该提案还受益于与聚合物LED技术领先公司Cambridge Display Technology Limited(CDT,UK)的合作伙伴关系,该公司将有助于我们有效地将我们的发现转化为技术进步。我们在莱比锡大学的项目合作伙伴将有助于将机械操纵整合到我们的单分子荧光显微镜中。我们的结果不仅将推进聚合物LED领域,还将推进其他聚合物光电子区域(例如激光和太阳能电池),以及聚合物和材料科学的更广泛领域。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time observation of conformational switching in single conjugated polymer chains.
- DOI:10.1126/sciadv.aao5786
- 发表时间:2018-03
- 期刊:
- 影响因子:13.6
- 作者:Tenopala-Carmona F;Fronk S;Bazan GC;Samuel IDW;Penedo JC
- 通讯作者:Penedo JC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Penedo其他文献
Molecular Insights Into the Organization and Folding Dynamics of Metabolite-Sensing Riboswitches
- DOI:
10.1016/j.bpj.2010.11.056 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Carlos Penedo;Daniel A. Lafontaine - 通讯作者:
Daniel A. Lafontaine
Twin-FRET: A New Molecular Ruler for Biomolecules
- DOI:
10.1016/j.bpj.2018.11.3036 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Sankar Jana;Marta Diez-Castellnou;Euan R. Kay;Carlos Penedo - 通讯作者:
Carlos Penedo
Carlos Penedo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Penedo', 18)}}的其他基金
A correlative, ultra-stable, optical tweezers-confocal microscope for high-resolution molecular and cellular mechanobiology
用于高分辨率分子和细胞力学生物学的关联、超稳定光镊共聚焦显微镜
- 批准号:
BB/X019047/1 - 财政年份:2023
- 资助金额:
$ 50.69万 - 项目类别:
Research Grant
Ultra-fast, ultra-small and ultra-dilute: an integrated understanding of conjugated polymers in solution across spatial and temporal scales
超快、超小和超稀释:跨空间和时间尺度溶液中共轭聚合物的综合理解
- 批准号:
EP/T013729/1 - 财政年份:2020
- 资助金额:
$ 50.69万 - 项目类别:
Research Grant
Organization and function of structure-specific endonucleases: single-molecule studies of fluorescently labelled NER complexes
结构特异性核酸内切酶的组织和功能:荧光标记 NER 复合物的单分子研究
- 批准号:
BB/E014674/1 - 财政年份:2007
- 资助金额:
$ 50.69万 - 项目类别:
Research Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水热炭溶解性有机质促进淹水土壤残留磷素释放机制及分子特征研究
- 批准号:42307434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 50.69万 - 项目类别:
Research Grant
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 50.69万 - 项目类别:
Engineering the Next Generation of Safer Hsp90 Inhibitors
设计下一代更安全的 Hsp90 抑制剂
- 批准号:
10587304 - 财政年份:2023
- 资助金额:
$ 50.69万 - 项目类别:
Biomarkers for parkinsonian disorders in CNS-originating extracellular vesicles
中枢神经系统来源的细胞外囊泡中帕金森病的生物标志物
- 批准号:
10662918 - 财政年份:2023
- 资助金额:
$ 50.69万 - 项目类别:
Pulmonary Vascular Development in Single Ventricle Heart Disease: A Longitudinal Biomarker Approach
单心室心脏病的肺血管发育:纵向生物标志物方法
- 批准号:
10591167 - 财政年份:2023
- 资助金额:
$ 50.69万 - 项目类别: