Single-molecule studies of light-emitting polymers: observing and manipulating polymer conformation in solution

发光聚合物的单分子研究:观察和操纵溶液中的聚合物构象

基本信息

  • 批准号:
    EP/N009886/1
  • 负责人:
  • 金额:
    $ 50.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

A remarkable advance in modern science is the ability to detect the light emitted by single molecules. This achievement - the demonstration of the ultimate detection limit - lies at the heart of a new era of microscopy that is transforming our understanding of biological processes. The ability to pinpoint the exact location of a single dye molecule, quantify fluctuations in the emission of individual molecules or the possibility of stretching at will a single biopolymer are providing knowledge that before it was only possible to dream of. Whilst these techniques will continue to revolutionize biology, we now propose to apply them to give breakthroughs in materials science. The first aim of this proposal is to develop a toolbox of single-molecule techniques that offer for the first time the opportunity of observing and manipulating materials as depicted in the textbooks: molecule by molecule. We will use these techniques to make a pioneering breakthrough in linking the conformation of conjugated polymers in solution to their light-emitting properties. Understanding this relationship is crucial because a key advantage of these materials is that they can be processed into optoelectronic devices using simple deposition methods from solution. Conjugated polymers are very promising for organic light-emitting diode (OLED) displays as well as solar cells and transistors. The display of information - on mobile phones, televisions and monitors is very important for work, communication, entertainment and learning. Advances in display technology have been dramatic and some of the most attractive are OLEDs. To meet the growing technological opportunities, it is crucial to develop a deeper understanding of how the properties of conjugated polymers relate to their conformation. The conformation is the shape of the polymer and it has a huge effect on the optical properties but it is very difficult to study because every polymer chain has a different shape. We will overcome this problem by measuring single polymers in solution, and by developing techniques to mechanically manipulate the conformation of the polymer to identify how changes in shape alter its light emission properties. This is a pioneering area because single-molecule methods for non-aqueous environments are still in their infancy and our work will allow us to understand how the solvent affects polymer conformation and light emission with an unprecedented level of detail.Our second goal involves the novel concept in materials sciences of manipulating the polymer backbone using mechanical force whilst simultaneously monitoring its fluorescence properties. We will apply manipulation techniques to conjugated polymers for the first time. Stretching the polymer in a controlled manner will reveal the optical signature of different conformations (i.e. linear versus collapsed) enabling the emission properties to be related to the underlying shape of each individual polymer chain - information not available by any other technique. To achieve these goals, we have put together a team of leading scientists in key areas through a collaboration between St Andrews (polymer physics & single-molecule) and Strathclyde and UCSB to assist with the synthesis of novel orthogonally functionalized conjugated polymers. The proposal also benefits from a partnership with Cambridge Display Technology Limited (CDT, UK), the leading company in polymer LED technology, that will help us to efficiently translate our findings into technological advances. Our project partners at the University of Leipzig will assist with the integration of mechanical manipulation into our single-molecule fluorescence microscopes. Our results will not only advance the field of polymer LEDs, but also other polymer optoelectronic areas such as lasers and solar cells, and the wider fields of polymer and materials science.
现代科学的一个显著进步是能够探测到单分子发出的光。这一成就--最终检测极限的展示--是显微镜新时代的核心,它正在改变我们对生物过程的理解。能够精确定位单个染料分子的确切位置,量化单个分子发射的波动,或者任意拉伸单个生物聚合物的可能性,这些都提供了以前只能梦想的知识。虽然这些技术将继续给生物学带来革命性的变化,但我们现在建议将它们应用于材料科学方面的突破。这项提议的第一个目标是开发一个单分子技术工具箱,首次提供教科书中描述的观察和操纵材料的机会:一个分子一个分子地观察和操纵材料。我们将利用这些技术在将溶液中共轭聚合物的构象与其发光性能联系起来方面取得开创性的突破。了解这种关系是至关重要的,因为这些材料的一个关键优势是,它们可以使用简单的沉积方法从溶液中加工成光电子器件。共轭聚合物在有机发光二极管(OLED)显示器、太阳能电池和晶体管等领域具有广阔的应用前景。在手机、电视和显示器上显示信息对于工作、交流、娱乐和学习非常重要。显示技术的进步是惊人的,其中一些最具吸引力的是有机发光二极管。为了满足日益增长的技术机遇,深入了解共轭聚合物的性质与其构象之间的关系是至关重要的。构象是聚合物的形状,它对光学性质有很大的影响,但由于每个聚合物链都有不同的形状,所以很难研究。我们将通过测量溶液中的单一聚合物来克服这个问题,并开发技术来机械操作聚合物的构象,以确定形状的变化如何改变其发光性能。这是一个开创性的领域,因为用于非水环境的单分子方法仍处于起步阶段,我们的工作将使我们能够以前所未有的详细程度了解溶剂如何影响聚合物构象和光发射。我们的第二个目标涉及材料科学中的新概念,即利用机械力操纵聚合物主链,同时监控其荧光性质。我们将首次将操纵技术应用于共轭聚合物。以受控方式拉伸聚合物将显示不同构象的光学特征(即线性和折叠),从而使发射特性与每个单独聚合物链的基本形状相关-这是任何其他技术都无法获得的信息。为了实现这些目标,我们通过圣安德鲁斯(聚合物物理和单分子)与Strathclyde和UCSB的合作,组建了一支关键领域的领先科学家团队,以协助合成新型的正交化功能共轭聚合物。这项提议还得益于与聚合物LED技术的领先公司剑桥显示技术有限公司(英国CDT)的合作,这将帮助我们有效地将我们的发现转化为技术进步。我们在莱比锡大学的项目合作伙伴将协助将机械操纵集成到我们的单分子荧光显微镜中。我们的结果不仅将推动聚合物LED领域的发展,还将推动其他聚合物光电子领域,如激光和太阳能电池,以及更广泛的聚合物和材料科学领域。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time observation of conformational switching in single conjugated polymer chains.
  • DOI:
    10.1126/sciadv.aao5786
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Tenopala-Carmona F;Fronk S;Bazan GC;Samuel IDW;Penedo JC
  • 通讯作者:
    Penedo JC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Penedo其他文献

Twin-FRET: A New Molecular Ruler for Biomolecules
  • DOI:
    10.1016/j.bpj.2018.11.3036
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sankar Jana;Marta Diez-Castellnou;Euan R. Kay;Carlos Penedo
  • 通讯作者:
    Carlos Penedo
Molecular Insights Into the Organization and Folding Dynamics of Metabolite-Sensing Riboswitches
  • DOI:
    10.1016/j.bpj.2010.11.056
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos Penedo;Daniel A. Lafontaine
  • 通讯作者:
    Daniel A. Lafontaine

Carlos Penedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Penedo', 18)}}的其他基金

A correlative, ultra-stable, optical tweezers-confocal microscope for high-resolution molecular and cellular mechanobiology
用于高分辨率分子和细胞力学生物学的关联、超稳定光镊共聚焦显微镜
  • 批准号:
    BB/X019047/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
Ultra-fast, ultra-small and ultra-dilute: an integrated understanding of conjugated polymers in solution across spatial and temporal scales
超快、超小和超稀释:跨空间和时间尺度溶液中共轭聚合物的综合理解
  • 批准号:
    EP/T013729/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
Organization and function of structure-specific endonucleases: single-molecule studies of fluorescently labelled NER complexes
结构特异性核酸内切酶的组织和功能:荧光标记 NER 复合物的单分子研究
  • 批准号:
    BB/E014674/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant

相似国自然基金

中性粒细胞在体内条件下重编程为造血干祖细胞的研究
  • 批准号:
    92068101
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
活细胞单分子成像定量研究EGFR内吞途径命运选择
  • 批准号:
    32000557
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
  • 批准号:
    32000518
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
  • 批准号:
    32000504
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
  • 批准号:
    31970754
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
黏附分子ICAM-1对于肺癌细胞生存和凋亡的作用及机制研究
  • 批准号:
    31900536
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
SIRT1调控突变型p53肿瘤细胞死亡的分子机制研究
  • 批准号:
    31970689
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
  • 批准号:
    91753104
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
D-A类共轭聚合物晶界内部tie molecule构象调控
  • 批准号:
    51573185
  • 批准年份:
    2015
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
  • 批准号:
    BB/X007294/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
Pulmonary Vascular Development in Single Ventricle Heart Disease: A Longitudinal Biomarker Approach
单心室心脏病的肺血管发育:纵向生物标志物方法
  • 批准号:
    10591167
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
Single Molecule Studies for Characterizing Dynamical and Mechanical Properties of Glassy Systems
用于表征玻璃系统动力学和机械性能的单分子研究
  • 批准号:
    2246765
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant
Highly Multiplexed Single Molecule Tethering
高度多重化的单分子束缚
  • 批准号:
    10760792
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
Mechanistic and single molecule studies of biological systems using fluorescence-force and label-free hybrid imaging at the University of Edinburgh
爱丁堡大学使用荧光力和无标记混合成像对生物系统进行机理和单分子研究
  • 批准号:
    BB/W020238/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
Making Nanopores for Single Molecule Studies with Tip Controlled Local Breakdown
通过尖端控制的局部分解制造用于单分子研究的纳米孔
  • 批准号:
    573740-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    University Undergraduate Student Research Awards
Synthesis and Studies of Single-Molecule Magnets Incorporating Strongly Coupled Two-Coordinate Metal Building Units
强耦合二配位金属构建单元单分子磁体的合成与研究
  • 批准号:
    2138017
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Fellowship Award
Development of integrative methods for correlative studies among dynamics, nano-localization, and function using simultaneous multi-color single-molecule and super-resolution imaging
使用同时多色单分子和超分辨率成像开发动力学、纳米定位和功能之间相关研究的综合方法
  • 批准号:
    22H02581
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Single-Complex, Single-Molecule, Single-Atom and Single-Site Studies of Chemical Events on Reactive Surfaces
反应表面化学事件的单络合物、单分子、单原子和单位点研究
  • 批准号:
    RGPIN-2017-06483
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-BSF: Synergistic Multiscale Modeling and Single-Molecule Fluorescence Studies of the Dynamics and Function of AAA+ Protein Disaggregation Machines
NSF-BSF:AAA 蛋白质解聚机动力学和功能的协同多尺度建模和单分子荧光研究
  • 批准号:
    2136816
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了