Novel logic gates in mammalian cells based on genetically incorporated unnatural amino acids
哺乳动物细胞中基于基因掺入的非天然氨基酸的新型逻辑门
基本信息
- 批准号:EP/T020687/1
- 负责人:
- 金额:$ 33.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Novel logic gates in mammalian cells can expand the scope of synthetic biology, benefiting the society. Synthetic biology focus on building artificial biological systems for research, engineering and medical applications. Logic gates are often the foundation of these applications. For example, synthetic biologists have used logic gates to construct cell-based sensors for detecting environmental pollutants, toxic chemicals, pathogens, cancer cells, etc. All of which have direct benefit to the society. In addition, logic gates can also be used to develop novel therapeutics. In fact, medical application represents one of the most exciting areas for synthetic biology. The research we wish to carry out here is to engineer novel logic gates in mammalian cells. These logic gates will process the input signals to produce an output signal in mammalian cells. These signals are binary (e.g. yes or no). In our design, the input signals will be the presence or absence of small molecules that otherwise have no effects to the cells. This characteristic is important so that the molecules can be used solely to control the logic gate output without interfering any cellular processes. In our design, the output signal will be functional or not of a protein. We wish to engineer logic gates that process the input signals rapidly and adjust its output signal accordingly upon change of the input signals, like a simple small computer. These features mean that the proposed logic gates will be particularly useful for applications where reversible fine regulation of a protein function or a cellular event is required but difficult to achieve by existing technologies.We will use amino acids that do not exist in nature as the small molecules for the input signals. Nature uses 20 amino acids as the building blocks to construct proteins in our body. Here, we intend to use unnatural amino acids that are not toxic and pose no observable effects to cells. More importantly, using a special technique of our expertise, these unnatural amino acids can be inserted into specific position of a protein at our wish. We have used this technique to control protein function and gene editing by the presence or absence of an unnatural amino acid. However, this technique has never been applied for logic gate engineering. The proposed logic gates are thus novel and will also be complementary to those currently available. It is therefore possible to assemble complex genetic circuits using different logic gates. In this project, we will engineer the basic logic gates that perform different logical operations. These basic logic gates can be combined to perform sophisticated tasks and are the basis of more complex logic gates. We will construct them in mammalian cells and characterise their performance using different analytical techniques. We will also implement a logic gate to control the function of engineered immune cells. Immune cells are part of our body's defence system. They can be engineered to combat non-infectious diseases, like cancer. Such cell-based therapies are of great promise and are provided by the NHS for children and young people with B cell acute lymphoblastic leukaemia. In some case, the cell-based therapies have even cured people where all other treatments have failed. However, they could also cause adverse side effects and even patient death. Although biological investigations and medical applications are outside the scope of present proposal, the logic gates to be developed here could improve the safety of current cell-based therapies, addressing a key concern of doctors and patients. Overall, we propose to engineer novel logic gates in mammalian cells. These logic gates will respond to non-toxic unnatural amino acid and can be used for reversible fine regulation of a protein function or a cellular property. The proposed logic gates have potential in different biomedical application and will likely have direct benefit to the society.
哺乳动物细胞中的新型逻辑门可以扩大合成生物学的范围,造福社会。合成生物学专注于构建用于研究,工程和医学应用的人工生物系统。逻辑门通常是这些应用的基础。例如,合成生物学家已经使用逻辑门来构建基于细胞的传感器,用于检测环境污染物、有毒化学物质、病原体、癌细胞等,所有这些都对社会有直接的好处。此外,逻辑门还可以用于开发新的治疗方法。事实上,医疗应用是合成生物学最令人兴奋的领域之一。我们希望在这里进行的研究是在哺乳动物细胞中设计新的逻辑门。这些逻辑门将处理输入信号以在哺乳动物细胞中产生输出信号。这些信号是二进制的(例如是或否)。在我们的设计中,输入信号将是小分子的存在或不存在,否则对细胞没有影响。这种特性很重要,因此分子可以单独用于控制逻辑门输出,而不会干扰任何细胞过程。在我们的设计中,输出信号将是蛋白质的功能或非功能。我们希望设计一种逻辑门,它能像一台简单的小型计算机一样,快速处理输入信号,并根据输入信号的变化相应地调整其输出信号。这些特点意味着,所提出的逻辑门将是特别有用的应用程序,可逆的精细调节蛋白质功能或细胞的事件是必需的,但很难实现由现有的technology.We将使用不存在于自然界中的氨基酸作为小分子的输入信号。大自然使用20种氨基酸作为构建模块来构建我们体内的蛋白质。在这里,我们打算使用非天然氨基酸,它们无毒,对细胞没有可观察到的影响。更重要的是,使用我们专业的特殊技术,这些非天然氨基酸可以按照我们的意愿插入蛋白质的特定位置。我们已经使用这种技术通过非天然氨基酸的存在或不存在来控制蛋白质功能和基因编辑。然而,这种技术从未应用于逻辑门工程。因此,所提出的逻辑门是新颖的,也将是对目前可用的逻辑门的补充。因此,可以使用不同的逻辑门来组装复杂的遗传电路。在这个项目中,我们将设计执行不同逻辑操作的基本逻辑门。这些基本逻辑门可以组合起来执行复杂的任务,并且是更复杂逻辑门的基础。我们将在哺乳动物细胞中构建它们,并使用不同的分析技术来验证它们的性能。我们还将实现一个逻辑门来控制工程免疫细胞的功能。免疫细胞是我们身体防御系统的一部分。它们可以被改造成对抗非传染性疾病,如癌症。这种以细胞为基础的疗法前景广阔,由国家卫生服务体系为患有B细胞急性淋巴细胞白血病的儿童和年轻人提供。在某些情况下,基于细胞的疗法甚至治愈了所有其他疗法都失败的人。然而,它们也可能引起不良副作用,甚至导致患者死亡。虽然生物学研究和医学应用超出了本提案的范围,但这里要开发的逻辑门可以提高目前基于细胞的治疗的安全性,解决医生和患者的关键问题。总的来说,我们建议在哺乳动物细胞中设计新的逻辑门。这些逻辑门将响应于无毒的非天然氨基酸,并且可用于蛋白质功能或细胞性质的可逆精细调节。所提出的逻辑门在不同的生物医学应用中具有潜力,并可能对社会产生直接的好处。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of mammalian cell logic gates controlled by unnatural amino acids.
- DOI:10.1016/j.crmeth.2021.100073
- 发表时间:2021-10-25
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Hsuan Tsai其他文献
Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications
- DOI:
10.1007/s10565-019-09488-2 - 发表时间:
2019-08-15 - 期刊:
- 影响因子:5.900
- 作者:
Emily M. Mills;Victoria L. Barlow;Louis Y. P. Luk;Yu-Hsuan Tsai - 通讯作者:
Yu-Hsuan Tsai
Modification of Spontaneous Emission Rates of Self-assembled CdSe Quantum Dots by Coupling to Hybrid Optical Nanoantennas
- DOI:
10.1007/s11468-016-0282-6 - 发表时间:
2016-06-13 - 期刊:
- 影响因子:4.300
- 作者:
Jyh-Shyang Wang;Kuo-Pin Chiu;Chien-Yon Lin;Yu-Hsuan Tsai;Chi-Tsu Yuan - 通讯作者:
Chi-Tsu Yuan
Yu-Hsuan Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23K26488 - 财政年份:2024
- 资助金额:
$ 33.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23H01795 - 财政年份:2023
- 资助金额:
$ 33.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design for the exciton-based molecular logic gates for quantum computing
用于量子计算的基于激子的分子逻辑门的设计
- 批准号:
22K03480 - 财政年份:2022
- 资助金额:
$ 33.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation of quantum LDPC codes and fault-tolerant logic gates in physical architectures
量子 LDPC 码和容错逻辑门在物理架构中的实现
- 批准号:
2755580 - 财政年份:2022
- 资助金额:
$ 33.37万 - 项目类别:
Studentship
Long-range guided surface waves with transverse spin and subwavelength confinement for optical switching and sensing
具有横向自旋和亚波长限制的长程引导表面波,用于光学开关和传感
- 批准号:
21H01383 - 财政年份:2021
- 资助金额:
$ 33.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhancing homozygous genome editing through DNA recombination and biologic gates
通过 DNA 重组和生物门增强纯合基因组编辑
- 批准号:
10281804 - 财政年份:2021
- 资助金额:
$ 33.37万 - 项目类别:
Enhancing homozygous genome editing through DNA recombination and biologic gates
通过 DNA 重组和生物门增强纯合基因组编辑
- 批准号:
10490854 - 财政年份:2021
- 资助金额:
$ 33.37万 - 项目类别:
CAREER:Electro-Optical Logic Gates Based on Perovskite Phototransistors
职业:基于钙钛矿光电晶体管的电光逻辑门
- 批准号:
1942558 - 财政年份:2020
- 资助金额:
$ 33.37万 - 项目类别:
Continuing Grant
Higher-performance multi-qubit quantum logic gates
更高性能的多量子位量子逻辑门
- 批准号:
2460796 - 财政年份:2020
- 资助金额:
$ 33.37万 - 项目类别:
Studentship
Design and Characterization of Quantum Logic Gates in Photonic Circuits using Geometric Phase
使用几何相位的光子电路中的量子逻辑门的设计和表征
- 批准号:
552780-2020 - 财政年份:2020
- 资助金额:
$ 33.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's