OptoCloud: Ultra-fast optically interconnected heterogeneous Data Centers

OptoCloud:超高速光互连异构数据中心

基本信息

  • 批准号:
    EP/T026081/1
  • 负责人:
  • 金额:
    $ 142.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The majority of human activities, including transport, Internet, banking, public health and entertainment, depend on Data Centers. Cloud traffic is forecasted to grow exponentially and account for 95% of global traffic. In 2015, the total power consumption of data centers worldwide was higher than the national power consumption of the UK and is predicted to increase up to 15-times by 2030. Currently, all data center networks are formed based on hierarchical electronic packet switched networks; however, they can't keep up with demand creating a ever increasing gap between data growth and Moore's Law. So, while compute node power, measured in flop/s, has increased by 65 times in the last 18 years, the node communication bandwidth has only increased by 4.8 times and the bytes communicated per flop have decreased 8 times. This creates a computation to communication wall, minimizing data movement and constraining applications to operate locally. In addition, these systems also suffer from very high median latencies, O(100microseconds) (order of 100microseconds), and 99.9-percentile tail latencies, O(100ms), to the detriment of the system and application performance.The OptoCloud fellowship aims to design and build an energy efficient, cost effective, scalable, single hop, and nanosecond speed optical circuit switched network. This will interconnect heterogeneous systems made of servers, CPUs, accelerators, neuromorphic processors, memory elements, storage to support different parts (rack, end-of-row) and sizes of data centers (small-medium size ~10-100,000 to ~1,000,000 server farm). Crucially, the network aims to offer zero data loss, without in-network a) buffering, b) active switching and routing, and c) network header addressing and processing to minimize complexity, and to consume very low power. Furthermore, the system also will inherently support 1-to-1, 1-to-N, N-to-N and N-to-1 connectivity in a synchronous manner without the need for data replication for multi/broad -casting, currently not possible. This is key to support diverse workloads such as storage caching, large-scale database lookups, training distributed deep neural networks, parallel computing that use communication primitives such as allreduce, broadcast and reduce, gather and scatter, all-to-all among others. To achieve these, OptoCloud will explore the fundamental challenges of sub-nanosecond optical switching, near receiver-less low-power transceivers and nanosecond scheduling able to reconfigure circuits and shape IT and network topologies every 10s-100s of nanoseconds. It aims to offer orders of magnitude improvement in a) switching, b) scheduling and network topology re-configuration, c) power consumption, d) medium and tail latency and finally e) throughput with zero data loss.The PI will work with the PDRAs, PhD students, industrial partners (Microsoft, Finisar, Xilinx, Sumitomo Electric), as well as universities (Columbia and National Technical University of Athens) and form a unique compute and optical network ecosystem to methodologically answer fundamental questions while reflecting all necessary requirements on the proposed concepts, and rigorously evaluating developed technologies using industrial driven use case scenarios.
大多数人类活动,包括交通、互联网、银行、公共卫生和娱乐,都依赖于数据中心。预计云流量将呈指数级增长,占全球流量的95%。2015年,全球数据中心的总功耗高于英国的全国功耗,预计到2030年将增加15倍。目前,所有的数据中心网络都是基于分层电子分组交换网络形成的;然而,它们无法跟上需求,从而在数据增长与摩尔定律之间产生了越来越大的差距。因此,虽然计算节点的功耗(以每秒触发器数为单位)在过去18年中增加了65倍,但节点通信带宽仅增加了4.8倍,而每次触发器通信的字节数减少了8倍。这就创建了一个计算到通信墙,最大限度地减少了数据移动,并限制应用程序在本地运行。此外,这些系统还遭受非常高的中值时延O(100微秒)(100微秒的量级)和99.9百分位尾时延O(100毫秒),从而损害系统和应用性能。OptoCloud奖学金旨在设计和构建节能、经济、可扩展、单跳和纳秒速度的光电路交换网络。这将互连由服务器、CPU、加速器、神经形态处理器、内存元素、存储组成的异构系统,以支持不同部件(机架、行尾)和数据中心大小(中小型~10- 100,000到~ 1,000,000服务器群)。至关重要的是,该网络旨在提供零数据丢失,而没有网络内a)缓冲,B)主动交换和路由,以及c)网络报头寻址和处理,以最小化复杂性,并消耗非常低的功率。此外,系统还将以同步方式固有地支持1对1、1对N、N对N和N对1连接,而不需要用于多播/广播的数据复制,这在当前是不可能的。这是支持各种工作负载的关键,例如存储缓存,大规模数据库查找,训练分布式深度神经网络,使用allreduce,broadcast and reduce,gather and scatter,all-to-all等通信原语的并行计算。为了实现这些目标,OptoCloud将探索亚纳秒光交换、接近无接收器的低功耗收发器和纳秒调度的基本挑战,这些挑战能够在每10 - 100纳秒内重新配置电路并塑造IT和网络拓扑。它的目标是在以下方面提供数量级的改进:a)交换,B)调度和网络拓扑重新配置,c)功耗,d)中延迟和尾延迟,最后e)零数据丢失的吞吐量。PI将与PDRA,博士生,工业合作伙伴合作(微软、Finisar、Xilinx、住友电气),以及大学(哥伦比亚和雅典国立技术大学)并形成一个独特的计算和光网络生态系统,以在方法上回答基本问题,同时反映所有必要的要求提出的概念,并使用工业驱动的用例场景严格评估开发的技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking packet-granular OCS network scheduling for data center traffic traces
对数据中心流量跟踪的数据包粒度 OCS 网络调度进行基准测试
MONet: heterogeneous Memory over Optical Network for large-scale data center resource disaggregation
A Hybrid Beam Steering Free-Space and Fiber Based Optical Data Center Network
  • DOI:
    10.1109/jlt.2023.3254160
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Yanwu Liu;Joshua L. Benjamin;Christopher W. F. Parsonson;G. Zervas
  • 通讯作者:
    Yanwu Liu;Joshua L. Benjamin;Christopher W. F. Parsonson;G. Zervas
Optimal and Low Complexity Control of SOA-Based Optical Switching with Particle Swarm Optimisation
利用粒子群优化对基于 SOA 的光开关进行优化和低复杂度控制
Design and transmission analysis of trench-assisted multi-core fibre in standard cladding diameter.
标准包层直径沟槽辅助多芯光纤设计与传输分析
  • DOI:
    10.1364/oe.472430
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mu X
  • 通讯作者:
    Mu X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Zervas其他文献

Georgios Zervas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Zervas', 18)}}的其他基金

SONATAS: Synthetic On-Chip and Off-Chip Optical Network System
SONATAS:综合片上和片外光网络系统
  • 批准号:
    EP/L027070/1
  • 财政年份:
    2014
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Research Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
  • 批准号:
    LE240100036
  • 财政年份:
    2024
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Nanopore sensors for multiplexed, ultra-fast gene detection
用于多重、超快速基因检测的纳米孔传感器
  • 批准号:
    LP220200182
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Linkage Projects
DCAD - Developing better diagnostics for Coronary Artery Disease with novel AI-enhanced, ultra fast proteomics
DCAD - 利用新型 AI 增强型超快速蛋白质组学开发更好的冠状动脉疾病诊断方法
  • 批准号:
    10072712
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Collaborative R&D
Ultra Fast X-ray absorption study on photo-excited electron in Pt / one-atomic layer ox ide systems
Pt/单原子层氧化物体系中光激发电子的超快X射线吸收研究
  • 批准号:
    22KF0009
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of spin-echo SANS method for fast measurement of ultra-small-angle neutron scattering information
超小角中子散射信息快速测量自旋回波SANS方法的发展
  • 批准号:
    23K11708
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing Nanofiltration Membranes for Unprecedented Ultra-Fast Lithium Extraction
优化纳滤膜以实现前所未有的超快速锂提取
  • 批准号:
    23K19183
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Repeated evolution of ultra-fast mandibular attacks in termites
白蚁超快下颌攻击的重复进化
  • 批准号:
    23K13963
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultra-Fast and Secure Terahertz Communications for 6G Wireless Systems
适用于 6G 无线系统的超快速、安全太赫兹通信
  • 批准号:
    DP230100878
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
    Discovery Projects
Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 142.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了