3D-Localisation - Three Dimensionally Defined Non-Fullerene Acceptors

3D 定位 - 三维定义的非富勒烯受体

基本信息

  • 批准号:
    EP/T028688/2
  • 负责人:
  • 金额:
    $ 6.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Sunlight presents an essentially infinite source of energy. Converting it into electricity, heat, or chemical energy is among the most appealing and effective approaches to tackling the energy crisis and reducing the impact of human activity induced climate change. Organic solar cells are one emerging technology that can aid in the transition to a renewable economy. They are lightweight, flexible devices which utilise readily available organic molecules and can be processed by energy-efficient, non-thermal methods unlike traditional silicon devices. The development of these devices has relied upon fullerenes as electron acceptor materials.Fullerenes are molecular forms of carbon with a spherical, soccer ball-like geometry which gives rise to delocalisation of electrons across the entire surface of the molecule. This structure attributes fullerene with a variety of unique properties, they can reversibly accept up to six electrons and can transport charges efficiently in three dimensions. However, it is now well-established that using fullerenes places strict limitations on organic solar cell performance. Fullerenes absorb sunlight only poorly and they participate in processes which are destructive to the device while under operation. Compounding this, they are expensive to produce and purchase, and are extremely challenging to chemically modify with any degree of control. This means that their optical and electronic properties cannot be easily tuned for solar cells or any other specific application. Ultimately, the use of fullerenes is non-sustainable therefore new non-fullerene acceptors are urgently required if these green energy technologies are to realise their full potential.This project takes a holistic view of the beneficial and detrimental properties of fullerenes and will use this approach to produce a completely new class of non-fullerene acceptors. These will serve to impact hugely on the delivery of renewable energy sources. There are two key facets to this approach:1) The use of three-dimensional molecular structures as a central scaffold. These will facilitate electronic delocalisation in three dimensions.2) By attaching selected heterocyclic side groups to these scaffolds, solar absorbance will be maximised, and the electrochemical and morphological properties of these new molecules will be controlled in a facile manner.This represents a step-change in the development of useful non-fullerene acceptors. A new generation of molecular materials for use in energy conversion technologies will be produced, and design rules for attaining truly fullerene-like behaviour in general, and for any application, will be established. In contrast with much of the existing work on organic electronic materials, which focusses upon molecules and polymers composed of planar heterocyclic fragments, exploring chemical space in three dimensions is key to the work proposed here. This adds significantly to the novelty of our approach.
阳光本质上是一种无限的能源。将其转化为电能、热能或化学能是解决能源危机和减少人类活动引起的气候变化影响的最有吸引力和最有效的方法之一。有机太阳能电池是一种有助于向可再生经济转型的新兴技术。它们是轻质、灵活的设备,利用容易获得的有机分子,并且可以通过与传统硅设备不同的节能、非热方法进行加工。这些器件的开发依赖于富勒烯作为电子受体材料。富勒烯是碳的分子形式,具有球形、足球状的几何形状,可导致电子在分子的整个表面上离域。这种结构赋予富勒烯多种独特的性质,它们可以可逆地接受多达六个电子,并且可以在三个维度上有效地传输电荷。然而,现在已经明确的是,使用富勒烯对有机太阳能电池的性能有严格的限制。富勒烯吸收阳光的能力很弱,并且它们在运行时会参与对设备造成破坏的过程。更糟糕的是,它们的生产和购买成本很高,并且在任何程度的控制下进行化学修饰都极具挑战性。这意味着它们的光学和电子特性不能轻易地针对太阳能电池或任何其他特定应用进行调整。最终,富勒烯的使用是不可持续的,因此,如果这些绿色能源技术要充分发挥其潜力,就迫切需要新的非富勒烯受体。该项目全面审视富勒烯的有益和有害特性,并将利用这种方法生产全新类别的非富勒烯受体。这些将对可再生能源的供应产生巨大影响。这种方法有两个关键方面:1)使用三维分子结构作为中心支架。这些将促进电子在三个维度上的离域。2)通过将选定的杂环侧基连接到这些支架上,太阳能吸收率将最大化,并且这些新分子的电化学和形态特性将以简便的方式控制。这代表了有用的非富勒烯受体开发的一个阶跃变化。将生产用于能量转换技术的新一代分子材料,并将建立一般意义上的、适用于任何应用的真正类富勒烯行为的设计规则。与有机电子材料方面的许多现有工作(重点关注由平面杂环片段组成的分子和聚合物)相比,探索三维化学空间是本文提出的工作的关键。这极大地增加了我们方法的新颖性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oxidation State Tuning of Room Temperature Phosphorescence and Delayed Fluorescence in Phenothiazine and Phenothiazine-5,5-dioxide Dimers.
吩噻嗪和吩噻嗪-5,5-二氧化物二聚体的室温磷光和延迟荧光的氧化态调谐。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iain Wright其他文献

The role of T56 in controlling the flexibility of the distal histidine in dehaloperoxidase-hemoglobin from Amphitrite ornata.
T56 在控制 Amphitrite ornata 脱卤过氧化物酶-血红蛋白远端组氨酸灵活性中的作用。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shu Jiang;Iain Wright;P. Swartz;S. Franzen
  • 通讯作者:
    S. Franzen
Teaching robots to weld by leveraging human expertise
利用人类专业知识教机器人焊接
  • DOI:
    10.1016/j.rcim.2025.103027
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    11.400
  • 作者:
    Junfu Zhou;Abdelkhalick Mohammad;Tianyi Zeng;Dragos Axinte;Iain Wright;Richard March
  • 通讯作者:
    Richard March
The role of T56 in controlling the flexibility of the distal histidine in dehaloperoxidase-hemoglobin from <em>Amphitrite ornata</em>
  • DOI:
    10.1016/j.bbapap.2013.06.005
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shu Jiang;Iain Wright;Paul Swartz;Stefan Franzen
  • 通讯作者:
    Stefan Franzen

Iain Wright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iain Wright', 18)}}的其他基金

3D-Localisation - Three Dimensionally Defined Non-Fullerene Acceptors
3D 定位 - 三维定义的非富勒烯受体
  • 批准号:
    EP/T028688/1
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
Into a New Plane - Three-Dimensionally Delocalised Nano-Graphenes
进入新的平面——三维离域纳米石墨烯
  • 批准号:
    EP/V048554/1
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant

相似海外基金

Determining how sub-cellular localisation of interleukin-1alpha regulates immunity.
确定 IL-1α 的亚细胞定位如何调节免疫。
  • 批准号:
    BB/Y004876/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
The Need for Speed: Understanding the Importance of Different ELF3 Nuclear Localisation Mechanisms
对速度的需求:了解不同 ELF3 核定位机制的重要性
  • 批准号:
    BB/Z514998/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Fellowship
Developing broken power line localisation devices with added grid sensing
开发带有电网感应功能的断线定位装置
  • 批准号:
    IE230100635
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Early Career Industry Fellowships
Better localisation for epilepsy surgery by optimising simultaneous EEG and functional MRI recordings at 7T
通过优化 7T 同步脑电图和功能性 MRI 记录,更好地定位癫痫手术
  • 批准号:
    2886505
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
Terahertz Backscattering Device for High-Resolution and Single-shot Localisation
用于高分辨率和单次定位的太赫兹后向散射装置
  • 批准号:
    NI230100096
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
Localisation technology supporting immersive pedestrian navigation and outdoor experiences.
支持沉浸式行人导航和户外体验的定位技术。
  • 批准号:
    2811109
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
Control of cell migration and tissue morphogenesis via modulation of mRNA localisation.
通过调节 mRNA 定位来控制细胞迁移和组织形态发生。
  • 批准号:
    2895002
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
18F-PSMA-bioharmonophore conjugates: a smart PET/optical tracer for improved prostate cancer detection and localisation
18F-PSMA-生物配乐团缀合物:用于改进前列腺癌检测和定位的智能 PET/光学示踪剂
  • 批准号:
    2886605
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
Investigating fungal pathogen effector localisation within plant cells
研究植物细胞内真菌病原体效应器的定位
  • 批准号:
    2879242
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
Project Title: Improved spatial localisation of ultrasonic scan data on physical assets
项目名称:改进物理资产超声波扫描数据的空间定位
  • 批准号:
    2903271
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了