Geometric eigenvalue bounds for the Dirichlet-to-Neumann Operator

Dirichlet-to-Neumann 算子的几何特征值界

基本信息

  • 批准号:
    EP/T030577/1
  • 负责人:
  • 金额:
    $ 34.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

A drum vibrates at distinct frequencies. The frequencies of a drum can be determined by eigenvalues of an elliptic operator called the Laplacian. The definition of the eigenvalues of an elliptic operator is similar to the definition of the eigenvalues of a linear map in the Euclidean plane. Now imagine another type of drum whose mass is concentrated on the boundary, i.e. the mass outside the boundary is negligible. The frequencies of such a drum are related to the eigenvalues of another elliptic operator called the Dirichlet-to-Neumann (DtN) operator. These eigenvalues are known as Steklov eigenvalues since this eigenvalue problem was introduced and studied by Steklov in 1902. The influence of the geometry of a manifold (e.g. the shape of a drum) on the Laplace eigenvalues has been greatly studied. Many developments came after the celebrated result of Hermann Weyl in 1911 on the asymptotic behaviour of the Laplace eigenvalues. The study of the Laplace eigenvalue problem has also extended to the setting of graphs (which are a collection of vertices and edges) and probability spaces. It also has had a significant influence on applied areas. For example, one of the main recent results in the study of the Laplace eigenvalue problem on graphs gave a mathematical justification for clustering algorithms in computer science and provided information about their efficiency. However, many developments on the relation between the geometry of underlying space and Steklov eigenvalues have been achieved during the last few years. The proposed research project aims to address some of the fundamental questions on connections between the Steklov and Laplace eigenvalues and geometric invariants of the underlying space. The underlying space can be a manifold, graph, or probability space. In the manifold setting, the study will reveal the geometric/topological information that is not captured by the Laplace eigenvalues. In the setting of a graph and probability space, the approach will be based on some of the recently developed techniques. The proposed project is intradisciplinary, and the results will be of significant importance not only in the areas of spectral geometry and geometric analysis but also in other areas such as probability and computer science. The DtN operator and its eigenvalues play a key role in the study of the sloshing problem in fluid dynamics, shape analysis and image processing, and Electrical Impedance Tomography (EIT). Hence, the outcome of the proposed project will be of fundamental interest in these applied areas. The proposed research project will also address some of the fundamental open problems in the study of nodal domains of the DtN eigenfunctions. The DtN eigenfunctions describe the vibration of the boundary of a drum whose mass concentrated on the boundary. In mathematical terminology, the zero-level set of an eigenfunction is called the nodal set, and its complement is the nodal domain. The proposed research project will investigate bounds on the number of the connected components of a nodal domain. The study of the nodal domains and nodal sets is a fascinating area of research in mathematics and mathematical physics.
鼓以不同的频率振动。鼓的频率可以由称为拉普拉斯的椭圆算子的本征值来确定。椭圆算子的特征值的定义类似于欧氏平面中线性映射的特征值的定义。现在设想另一种类型的鼓,其质量集中在边界上,即边界外的质量可以忽略不计。这种磁鼓的频率与另一个椭圆算子的本征值有关,该椭圆算子称为Dirichlet-to-Neumann(DTN)算子。这些特征值被称为Steklov特征值,因为这个特征值问题是由Steklov在1902年提出并研究的。流形的几何形状(如鼓的形状)对拉普拉斯本征值的影响已经得到了广泛的研究。许多发展是在1911年赫尔曼·韦尔关于拉普拉斯本征值的渐近行为的著名结果之后出现的。拉普拉斯特征值问题的研究也扩展到图(顶点和边的集合)和概率空间的设置。它还对应用领域产生了重大影响。例如,最近研究图上的拉普拉斯特征值问题的一个主要结果为计算机科学中的聚类算法提供了数学证明,并提供了关于其效率的信息。然而,在过去的几年里,关于基础空间的几何和Steklov本征值之间的关系的研究已经取得了许多进展。拟议的研究项目旨在解决关于Steklov和Laplace特征值与基础空间的几何不变量之间的联系的一些基本问题。底层空间可以是流形、图或概率空间。在流形背景下,研究将揭示拉普拉斯本征值没有捕捉到的几何/拓扑信息。在图和概率空间的设置中,该方法将基于最近发展的一些技术。拟议的项目是跨学科的,其结果不仅在光谱几何和几何分析领域具有重要意义,而且在概率和计算机科学等其他领域也具有重要意义。DTN算子及其特征值在流体力学、形状分析和图像处理以及电阻抗断层成像(EIT)中的晃动问题研究中起着关键作用。因此,拟议项目的结果将对这些应用领域产生根本的影响。拟议的研究项目还将解决DTN特征函数的节点域研究中的一些基本开放问题。DTN特征函数描述了质量集中在边界上的转鼓边界的振动。在数学术语中,特征函数的零级集称为节点集,其补集称为节点域。拟议的研究项目将调查节点域的连通分量数量的界限。对节点域和节点集的研究是数学和数学物理中一个引人入胜的领域。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nodal count for Dirichlet-to-Neumann operators with potential
具有潜力的狄利克雷到诺依曼算子的节点数
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hassannezhad A.
  • 通讯作者:
    Hassannezhad A.
Escobar constants of planar domains
平面域的 Escobar 常数
Applications of possibly hidden symmetry to Steklov and mixed Steklov problems on surfaces
  • DOI:
    10.1016/j.jmaa.2024.128088
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    T. Arias-Marco;E. Dryden;Carolyn S. Gordon;Asma Hassannezhad;Allie Ray;E. Stanhope
  • 通讯作者:
    T. Arias-Marco;E. Dryden;Carolyn S. Gordon;Asma Hassannezhad;Allie Ray;E. Stanhope
On Pleijel's nodal domain theorem for the Robin problem
关于 Robin 问题的 Pleijel 节点域定理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hassannezhad A.
  • 通讯作者:
    Hassannezhad A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asma Hassannezhad其他文献

Spectral geometry of the Steklov problem on orbifolds
轨道折叠上 Steklov 问题的谱几何
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Arias;E. Dryden;Carolyn S. Gordon;Asma Hassannezhad;Allie Ray;E. Stanhope
  • 通讯作者:
    E. Stanhope
Eigenvalues of the Laplacian and extrinsic geometry
拉普拉斯和外在几何的特征值
Geometric Bounds for Low Steklov Eigenvalues of Finite Volume Hyperbolic Surfaces
  • DOI:
    10.1007/s12220-025-01990-w
  • 发表时间:
    2025-04-04
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Asma Hassannezhad;Antoine Métras;Hélène Perrin
  • 通讯作者:
    Hélène Perrin
Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem
拉普拉斯和 Steklov 问题特征值的共形上限
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asma Hassannezhad
  • 通讯作者:
    Asma Hassannezhad
JUNIOR HAUSDORFF TRIMESTER PROGRAM: OPTIMAL TRANSPORT (GROUP A)
豪斯多夫初级三年级课程:最佳交通(A 组)
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lashi Bandara;Fabio Caval;Q. Deng;Asma Hassannezhad;Heikki Jylhä;Martin Kell;C. Ketterer;Sajjad Lakzian;Andrea Mondino
  • 通讯作者:
    Andrea Mondino

Asma Hassannezhad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Standard Grant
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
  • 批准号:
    22K12052
  • 财政年份:
    2022
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the Behaviour of Eigenvalue Multiplicities Associated with Graphs
与图相关的特征值重数行为的研究
  • 批准号:
    575956-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    22H01122
  • 财政年份:
    2022
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
  • 批准号:
    RGPIN-2022-03404
  • 财政年份:
    2022
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Discovery Grants Program - Individual
Fast and accurate eigenvalue calculations by hierarchical low-rank approximation and its application to large-scale electronic structure calculations
分层低阶近似快速准确的特征值计算及其在大规模电子结构计算中的应用
  • 批准号:
    22H03598
  • 财政年份:
    2022
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Constructions of discrete integrable systems with eigenvalue preserving transformations and their asymptotic analysis
具有特征值保持变换的离散可积系统的构造及其渐近分析
  • 批准号:
    21K13844
  • 财政年份:
    2021
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sharp Eigenvalue Inequalities and Minimal Surfaces
锐特征值不等式和极小曲面
  • 批准号:
    2104254
  • 财政年份:
    2021
  • 资助金额:
    $ 34.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了