ELEMENT - Exascale Mesh Network
ELEMENT - 百兆亿级网状网络
基本信息
- 批准号:EP/V001345/1
- 负责人:
- 金额:$ 31.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Exascale Mesh Network - ELEMENT - addresses the high priority use case of meshing for the Exascale (i.e. ensuring that meshes are of sufficient quality to represent Exascale problems and can be partitioned efficiently to minimise load imbalance) as well as meshing at the Exascale (i.e. creating highly scalable solutions that will be able to exploit extreme levels of parallelism). The meshes required for Exascale simulations, under which we will aim to model problems with extreme geometric complexity and levels of refinement, will necessarily be very large with 10^9 cells and above, and contain cells that may differ in size by many orders of magnitude to faithfully resolve the underlying physics at their appropriate scales. Meshing and geometry management remain a significant bottleneck for complex applications on HPC platforms, posing a challenging obstacle that must be overcome to enable Exascale simulations. From a technical perspective, these issues include (but are not limited to) improved geometric handling, mesh adaptation and optimisation, intelligent meshing, automation and robustness, all within a large distributed environment that lies outside of our current capabilities.ELEMENT's objectives are threefold: building a community around meshing practice by establishing a collaborative network; undertaking proof of concept studies, with prototype implementations of two target challenges; and publishing a Vision Paper and strategic research agenda covering the full meshing workflow, from mesh generation to adaptation, partitioning and visualisation.
亿级网格网络元素--解决亿级网格划分的高优先级用例(即确保网格具有足够的质量来表示亿级级问题,并且可以有效地进行分区以最大限度地减少负载不平衡)以及亿级级网格划分(即创建高度可扩展的解决方案,能够利用极端的并行性)。亿级模拟所需的网格,我们将致力于模拟具有极端几何复杂性和精细化水平的问题,必须非常大,具有10^9个或更高的单元,并包含大小可能相差许多个数量级的单元,以在适当的比例忠实地解决潜在的物理问题。网格划分和几何图形管理仍然是HPC平台上复杂应用程序的一个重要瓶颈,这是一个必须克服的具有挑战性的障碍,才能实现艾级模拟。从技术角度来看,这些问题包括(但不限于)改进的几何处理、网格适应和优化、智能网格划分、自动化和健壮性,所有这些都在我们当前能力之外的大型分布式环境中。ELEMENT的目标有三个:通过建立一个协作网络,围绕网格划分实践建立一个社区;进行概念验证研究,并实施两个目标挑战的原型;以及发布一份愿景文件和战略研究议程,涵盖从网格生成到适应、划分和可视化的整个网格划分工作流程。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Barycentric-Based Evaluation Over Spectral/hp Elements
- DOI:10.1007/s10915-021-01750-2
- 发表时间:2021-03
- 期刊:
- 影响因子:2.5
- 作者:Edward Laughton;Vidhi Zala;A. Narayan;R. Kirby;D. Moxey
- 通讯作者:Edward Laughton;Vidhi Zala;A. Narayan;R. Kirby;D. Moxey
A comparison of interpolation techniques for non-conformal high-order discontinuous Galerkin methods
- DOI:10.1016/j.cma.2021.113820
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Edward Laughton;G. Tabor;D. Moxey
- 通讯作者:Edward Laughton;G. Tabor;D. Moxey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Parsons其他文献
Sharing and Reuse in Knowledge Discovery
知识发现中的共享和重用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Atkinson;Rob Baxter;P. Brezany;Óscar Corcho;Michelle Galea;Mark Parsons;D. Snelling;Jano van Hemert - 通讯作者:
Jano van Hemert
Healthcare Data Safe Havens: Towards a Logical Architecture and Experiment Automation
医疗保健数据安全港:走向逻辑架构和实验自动化
- DOI:
10.1049/joe.2016.0170 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Robertson;Fausto Giunchiglia;S. Pavis;E. Turra;Gábor Bella;Eliza Elliot;A. Morris;M. Atkinson;Gordon McAllister;A. Manataki;P. Papapanagiotou;Mark Parsons - 通讯作者:
Mark Parsons
Light trap transects – a field method for ascertaining the habitat preferences of night-flying Lepidoptera, using Mythimna turca (Linnaeus 1761) (Lepidoptera: Noctuidae) as an example
- DOI:
10.1023/b:jico.0000045816.88219.bf - 发表时间:
2004-06-01 - 期刊:
- 影响因子:1.900
- 作者:
Adrian Spalding;Mark Parsons - 通讯作者:
Mark Parsons
12. Very Low Cerebral Blood Volume (VLCBV) – a new predictor of haemorrhagic transformation after thrombolysis for acute ischaemic stroke
- DOI:
10.1016/j.jocn.2009.07.037 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Bruce Campbell;Soren Christensen;Ken Butcher;Ian Gordan;Mark Parsons;Patricia Desmond;Alan Barber P.;Chris Levi;Chris Bladin;Deidre De Silva;Andre Peeters;Geoffrey Donnan;Stephen Davis; EPITHET Investigators - 通讯作者:
EPITHET Investigators
<strong>32.</strong> : Baseline peri-infarct N-acetylaspartic acid concentration correlates with subsequent white matter atrophy after ischaemic stroke
- DOI:
10.1016/j.jocn.2014.06.046 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Nawaf Yassi;Bruce Campbell;Patricia Desmond;Mark Parsons;Stephen Davis;Andrew Bivard - 通讯作者:
Andrew Bivard
Mark Parsons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Parsons', 18)}}的其他基金
International Collaboration Towards Net Zero Computational Modelling and Simulation (CONTINENTS)
实现净零计算建模和仿真的国际合作(大陆)
- 批准号:
EP/Z531170/1 - 财政年份:2024
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Malleability in resource allocation for improved system efficiency in high-performance computing
资源分配的可塑性可提高高性能计算的系统效率
- 批准号:
EP/Y53061X/1 - 财政年份:2024
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Cirrus Phase II: Preparing for Heterogeneity at the Exascale
Cirrus 第二阶段:为百亿亿次异构性做好准备
- 批准号:
EP/T02206X/1 - 财政年份:2020
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Research Data Facility As A Service
研究数据设施即服务
- 批准号:
EP/V000268/1 - 财政年份:2020
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Strategic Partnership in Computational Science for Advanced Simulation and Modelling of Engineering Systems - ASiMoV
工程系统高级仿真和建模计算科学战略合作伙伴关系 - ASiMoV
- 批准号:
EP/S005072/1 - 财政年份:2018
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Support for the Preparatory Phase of PACE
对 PACE 筹备阶段的支持
- 批准号:
EP/F038127/1 - 财政年份:2008
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
IPY: The International Polar Year Data and Information Service
IPY:国际极地年数据和信息服务
- 批准号:
0632354 - 财政年份:2007
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
相似国自然基金
基于NIC的Exascale级计算机聚合通信卸载关键技术研究
- 批准号:61202124
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER : Towards Exascale Performance of Parallel Applications
职业:迈向并行应用的百亿亿级性能
- 批准号:
2338077 - 财政年份:2024
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
ExCALIBUR HES: Exascale Data Testbed for Simulation, Data Analysis & Visualisation
ExCALIBUR HES:用于仿真、数据分析的百亿亿次数据测试台
- 批准号:
EP/Y004051/1 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
DAWN Phase 1 FY2023-2024: A UK Industry Academic Co-design Partnership Delivering a Pre-Exascale Research Cloud for AI and Simulation
DAWN 2023-2024 财年第 1 阶段:英国行业学术联合设计合作伙伴关系,为人工智能和仿真提供前百兆亿级研究云
- 批准号:
ST/Z000386/1 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
- 批准号:
2883937 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Studentship
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311756 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
ExCALIBUR H&ES: Intel Xeon GPU Max Pre-Exascale Testbed
神剑H
- 批准号:
EP/Y028082/1 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Research Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311758 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Beyond Standard Numerical Relativistic Hydrodynamics in Binary Neutron Stars: Cooperation of Machine Learning Toward Era of Gravitational Waves Astronomy and Exascale Supercomputers
双中子星中超越标准数值相对论流体动力学:机器学习在引力波时代的合作天文学和百亿亿次超级计算机
- 批准号:
23K03399 - 财政年份:2023
- 资助金额:
$ 31.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)