Nanovoids for Developing New Hydrogen-resistant Materials (NanoHMAT)

用于开发新型抗氢材料的纳米空隙(NanoHMAT)

基本信息

  • 批准号:
    EP/V04902X/1
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Hydrogen is ubiquitous and its applications will drive the technology of a net-zero carbon society. Hydrogen isotopes fuel the nuclear fusion reaction, the most efficient potentially useable energy process. Hydrogen is also widely seen as an energy carrier of the future and the most versatile means of energy storage. It can be produced via electrolysis from renewable sources, such as wind or solar power, and stored to be used as fuel or as a raw material in the chemical industry. Hampering these opportunities, hydrogen is known to cause catastrophic failures in metallic structures. The strength, fracture toughness and ductility of metals can be reduced by orders of magnitude in the presence of hydrogen. From bolt cracking at the Leadenhall ("Cheesegrater") skyscraper to the failure of offshore structures, the impact of this so-called hydrogen embrittlement phenomenon is pervasive across the energy, transport, construction and defence sectors. Research efforts in the hydrogen embrittlement community have been mainly directed towards the understanding of this chemo-mechanical phenomenon and the development of models capable of predicting when hydrogen assisted failures would occur. NanoHMAT aims at bringing a paradigm-shift by going from analysis to design, exploring high-risk high-gain approaches for developing a new generation of hydrogen embrittlement-resistant materials. This will be achieved by exploiting the fact that hydrogen is "trapped" at microstructural features such as grain boundaries, voids or carbides, in a research endeavour that combines multi-scale/physics simulations, advanced characterisation techniques and state-of-the-art nano/micro-manufacturing.
氢无处不在,其应用将推动净零碳社会的技术发展。氢同位素为核聚变反应提供燃料,这是最有效的潜在可用能源过程。氢也被广泛视为未来的能源载体和最通用的储能手段。它可以通过电解从可再生能源,如风能或太阳能,并存储用作燃料或化学工业的原材料。阻碍这些机会,氢已知会导致金属结构的灾难性故障。氢的存在会使金属的强度、断裂韧性和延展性降低几个数量级。从Leadenhall(“奶酪刨”)摩天大楼的螺栓开裂到海上结构的失效,这种所谓的氢脆现象的影响遍及能源、运输、建筑和国防部门。氢脆社区的研究工作主要是针对理解这种化学机械现象和开发能够预测氢辅助故障何时发生的模型。NanoHMAT旨在通过从分析到设计的转变,探索开发新一代抗氢脆材料的高风险高收益方法。这将通过利用氢被“捕获”在微观结构特征(如晶界、空隙或碳化物)的事实来实现,研究工作结合了多尺度/物理模拟、先进的表征技术和最先进的纳米/微米制造。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogen embrittlement susceptibility of additively manufactured 316L stainless steel: Influence of post-processing, printing direction, temperature and pre-straining
  • DOI:
    10.1016/j.addma.2023.103834
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    11
  • 作者:
    G. Álvarez;Z. Harris;K. Wada;C. Rodríguez;E. Martínez-Pañeda
  • 通讯作者:
    G. Álvarez;Z. Harris;K. Wada;C. Rodríguez;E. Martínez-Pañeda
Comparison of hydrogen diffusivities measured by electrochemical permeation and temperature-programmed desorption in cold-rolled pure iron
冷轧纯铁中电化学渗透和程序升温脱附测量氢扩散率的比较
A mechanism-based multi-trap phase field model for hydrogen assisted fracture
  • DOI:
    10.1016/j.ijplas.2021.103044
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Isfandbod, Mehrdad;Martinez-Paneda, Emilio
  • 通讯作者:
    Martinez-Paneda, Emilio
On the relative efficacy of electropermeation and isothermal desorption approaches for measuring hydrogen diffusivity
  • DOI:
    10.1016/j.ijhydene.2022.10.025
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    A. Zafra;Z. Harris;E. Korec;E. Mart'inez-Paneda
  • 通讯作者:
    A. Zafra;Z. Harris;E. Korec;E. Mart'inez-Paneda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emilio Martinez-Paneda其他文献

Emilio Martinez-Paneda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emilio Martinez-Paneda', 18)}}的其他基金

Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
  • 批准号:
    EP/Y037219/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/2
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
  • 批准号:
    MR/V024124/2
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
  • 批准号:
    MR/V024124/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship

相似海外基金

Developing new tests and treatments to enable prevention of osteoarthritis.
开发新的测试和治疗方法以预防骨关节炎。
  • 批准号:
    MR/Y003470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Fellowship
Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
  • 批准号:
    2341962
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Developing a new method for the identification of cancer in archaeological populations
开发一种鉴定考古群体中癌症的新方法
  • 批准号:
    2341415
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
  • 批准号:
    2412196
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
  • 批准号:
    2886506
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Studentship
Developing and exploring methods to understand human-nature interactions in urban areas using new forms of big data
利用新形式的大数据开发和探索理解城市地区人与自然相互作用的方法
  • 批准号:
    ES/W012979/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
GOALI: Developing New Hydrogen Isotope Exchange Strategies for Isotope Labelling of Pharmaceuticals
目标:开发用于药物同位素标记的新​​氢同位素交换策略
  • 批准号:
    2247057
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
Developing and evaluating new measures of family availability to provide care to people with dementia
制定和评估家庭可用性的新衡量标准,为痴呆症患者提供护理
  • 批准号:
    10728725
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
Developing new therapeutic strategies for brain metastasis
开发脑转移的新治疗策略
  • 批准号:
    10578405
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了