New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
基本信息
- 批准号:MR/V024124/1
- 负责人:
- 金额:$ 187.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The biggest scientific and engineering challenges often lie in between disciplines. Through the years, we have gained a good understanding of how materials behave when subjected to mechanical loads (solid mechanics). We also understand the nature of the chemical reactions occurring when materials are exposed to a given environment (electrochemistry). However, predicting material behaviour due to combined exposure to mechanical loads and a degrading environment continues to be an elusive goal. Not being able to understand and predict electro-chemo-mechanics phenomena comes at a great cost since materials are very sensitive to environmental and mechanical degradation in many applications. The value of the fundamental science conducted in this fellowship will be demonstrated on two of these applications: (1) corrosion damage, and (2) Li-Ion batteries. Their importance cannot be emphasised enough. Solely in the UK, failure of structures and industrial components due to corrosion entails a staggering cost of £46 billion per annum. Li-Ion batteries are key enablers in achieving universal access to reliable, clean, sustainable energy.Now, there is an opportunity to develop models that can prevent corrosion failures and significantly enhance progress in battery technology. Larger computer resources and new algorithms enable simulating concurrent (coupled) physical processes such as chemical reactions, diffusion of species and mechanical deformation; so-called multi-physics modelling. However, the opportunity of building upon the success of multi-physics simulations to predict material degradation is held back due to our inability to model how the boundary between two different phases develops over time. For example, corrosion is often non-uniform, leading to small defects (pits) that grow and act as crack initiators. Preventing the associated catastrophic failures, such as the Morandi Bridge collapse, requires capturing how these defects will nucleate at the electrolyte-material interface and grow. But the modelling of morphological changes in an evolving interface has been long considered a mathematical and computational challenge. I will overcome this longstanding obstacle by smearing the "sharp" interface over a small diffuse region using an auxiliary "phase field" variable - a paradigm change that will make tracking of evolving interfaces amenable to numerical computations. A new generation of models will be developed and validated with powerful 3D techniques such as X-ray Computed Tomography, which have timely experienced notable improvements in spatial resolution and image reconstruction times. By explicitly capturing the damage process, this fellowship will not only open new horizons in the understanding of multi-physics material degradation phenomena but also set the basis for the introduction of simulation-based assessment in engineering practice; model predictions can be compared with inspection data, introducing the "Digital Twins" and "Virtual Testing" paradigms into engineering applications involving demanding environments.The near-term societal impact will be demonstrated by addressing salient technological problems in offshore energy, batteries, water supply networks and nuclear fission. Efforts will be guided by the fellowship advisory board, which includes leading firms in each of these sectors: EDF Energy, Rolls-Royce, SUEZ, PA Consulting, Vattenfall and Subsea7. For example, the new generation of models developed will be used to assist in the life extension decision of the oldest large-scale wind farm in the world, Horns Rev 1. The lessons learned in this world-first engineering assessment will set an example for the entire sector and demonstrate the potential of computer simulations in enhancing the economic viability of the leading renewable energy source. The successful fellowship will lay scientific foundations for new engineering solutions that will improve UK's competitiveness and our quality of life.
最大的科学和工程挑战往往存在于学科之间。多年来,我们对材料在承受机械载荷(固体力学)时的行为有了很好的了解。我们还了解材料暴露于特定环境时发生的化学反应的性质(电化学)。然而,预测材料的行为,由于组合暴露于机械负荷和退化的环境仍然是一个难以捉摸的目标。无法理解和预测电化学力学现象是一个巨大的代价,因为材料在许多应用中对环境和机械降解非常敏感。该奖学金中进行的基础科学的价值将在其中两个应用中得到证明:(1)腐蚀损伤,和(2)锂离子电池。它们的重要性怎么强调都不为过。仅在英国,由于腐蚀导致的结构和工业部件故障每年就需要460亿英镑的惊人成本。锂离子电池是实现普遍获得可靠、清洁、可持续能源的关键推动因素。现在,有机会开发能够防止腐蚀故障并显著促进电池技术进步的模型。更大的计算机资源和新的算法能够模拟并发(耦合)物理过程,如化学反应,物种扩散和机械变形;所谓的多物理建模。然而,由于我们无法模拟两个不同阶段之间的边界如何随着时间的推移而发展,因此在多物理场模拟成功的基础上预测材料降解的机会受到了阻碍。例如,腐蚀通常是不均匀的,导致小缺陷(凹坑)生长并作为裂纹引发剂。防止相关的灾难性故障,如莫兰迪桥倒塌,需要捕捉这些缺陷将如何在电解质-材料界面处成核和生长。但是,在一个不断发展的界面中对形态变化进行建模一直被认为是一个数学和计算挑战。我将克服这个长期存在的障碍,通过涂抹“尖锐”的界面上的一个小的扩散区域使用辅助“相场”变量-一个范式的变化,将使跟踪不断变化的接口服从数值计算。新一代的模型将通过强大的3D技术(如X射线计算机断层扫描)进行开发和验证,这些技术在空间分辨率和图像重建时间方面都有了显着的改进。通过明确捕捉损伤过程,该奖学金不仅将在理解多物理场材料退化现象方面开辟新的视野,而且还为在工程实践中引入基于模拟的评估奠定了基础;可以将模型预测与检查数据进行比较,将“数字孪生”和“虚拟测试”范例引入到涉及苛刻环境的工程应用中。长期的社会影响将通过解决海上能源、电池、供水网络和核裂变方面的突出技术问题来展示。研究金咨询委员会将指导各项工作,该委员会包括这些领域的领先公司:EDF Energy、Rolls-Royce、苏伊士、PA Consulting、Vattenfall和Subsea 7。例如,开发的新一代模型将用于协助世界上最古老的大型风电场Horns Rev 1的寿命延长决策。在这一世界首创的工程评估中吸取的经验教训将为整个行业树立榜样,并展示计算机模拟在提高领先可再生能源经济可行性方面的潜力。成功的奖学金将为新的工程解决方案奠定科学基础,这将提高英国的竞争力和我们的生活质量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multielement polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems
- DOI:10.1016/j.apm.2022.11.039
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:J. C. Garc'ia-Merino;C. Calvo-Jurado;E. Mart'inez-Paneda;E. Garc'ia-Mac'ias
- 通讯作者:J. C. Garc'ia-Merino;C. Calvo-Jurado;E. Mart'inez-Paneda;E. Garc'ia-Mac'ias
A generalised, multi-phase-field theory for dissolution-driven stress corrosion cracking and hydrogen embrittlement
- DOI:10.1016/j.jmps.2022.104951
- 发表时间:2022-06-06
- 期刊:
- 影响因子:5.3
- 作者:Cui, Chuanjie;Ma, Rujin;Martinez-Paneda, Emilio
- 通讯作者:Martinez-Paneda, Emilio
A phase field model for hydrogen-assisted fatigue
- DOI:10.1016/j.ijfatigue.2021.106521
- 发表时间:2022-01-01
- 期刊:
- 影响因子:6
- 作者:Golahmar, Alireza;Kristensen, Philip K.;Martinez-Paneda, Emilio
- 通讯作者:Martinez-Paneda, Emilio
Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling
- DOI:10.1016/j.jpowsour.2022.231119
- 发表时间:2022-02-19
- 期刊:
- 影响因子:9.2
- 作者:Boyce, Adam M.;Martinez-Paneda, Emilio;Shearing, Paul R.
- 通讯作者:Shearing, Paul R.
A phase field-based framework for electro-chemo-mechanical fracture: crack-contained electrolytes, chemical reactions and stabilisation
- DOI:10.1016/j.cma.2023.116235
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:T. Hageman;E. Mart'inez-Paneda
- 通讯作者:T. Hageman;E. Mart'inez-Paneda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emilio Martinez-Paneda其他文献
Emilio Martinez-Paneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emilio Martinez-Paneda', 18)}}的其他基金
Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
- 批准号:
EP/Y037219/1 - 财政年份:2024
- 资助金额:
$ 187.73万 - 项目类别:
Research Grant
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
- 批准号:
EP/V009680/2 - 财政年份:2023
- 资助金额:
$ 187.73万 - 项目类别:
Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
- 批准号:
MR/V024124/2 - 财政年份:2023
- 资助金额:
$ 187.73万 - 项目类别:
Fellowship
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
- 批准号:
EP/V009680/1 - 财政年份:2021
- 资助金额:
$ 187.73万 - 项目类别:
Research Grant
Nanovoids for Developing New Hydrogen-resistant Materials (NanoHMAT)
用于开发新型抗氢材料的纳米空隙(NanoHMAT)
- 批准号:
EP/V04902X/1 - 财政年份:2021
- 资助金额:
$ 187.73万 - 项目类别:
Research Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
NewPhaseBio - A new generation of phase field-based models to predict the degradation of biomaterials
NewPhaseBio - 新一代基于相场的模型,用于预测生物材料的降解
- 批准号:
EP/Y028236/1 - 财政年份:2023
- 资助金额:
$ 187.73万 - 项目类别:
Fellowship
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
- 批准号:
MR/V024124/2 - 财政年份:2023
- 资助金额:
$ 187.73万 - 项目类别:
Fellowship
Construction of new phase field methods for dynamical problems in the calculus of variations
变分法动力学问题新相场方法的构建
- 批准号:
20K14343 - 财政年份:2020
- 资助金额:
$ 187.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of new electronic phase transitions based on quantum tunneling processes by a strong mid-infrared electric-field pulse
通过强中红外电场脉冲实现基于量子隧道过程的新型电子相变
- 批准号:
18H01166 - 财政年份:2018
- 资助金额:
$ 187.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
This project will investigate a new way to image the phase of the electron wave function using the method of near-field ptychography, with diverse app
该项目将研究一种使用近场叠层成像方法对电子波函数相位进行成像的新方法,并具有多种应用程序
- 批准号:
1997109 - 财政年份:2017
- 资助金额:
$ 187.73万 - 项目类别:
Studentship
Development of New Multiscale Model to Evaluate Material Performance Using Phase-Field-Crystal Method
开发新的多尺度模型以使用相场晶体方法评估材料性能
- 批准号:
21760074 - 财政年份:2009
- 资助金额:
$ 187.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
SBIR Phase I: Evaluation of New, Ultra-Sensitive Electric Field Measurement Technology for the Detection of Earthquake Precursors
SBIR 第一阶段:评估用于检测地震前兆的新型超灵敏电场测量技术
- 批准号:
0539772 - 财政年份:2006
- 资助金额:
$ 187.73万 - 项目类别:
Standard Grant
Design of new high pressure apparatus using a phase transition induced by temperature or magnetic field
利用温度或磁场诱导相变设计新型高压装置
- 批准号:
12554011 - 财政年份:2000
- 资助金额:
$ 187.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: New Directions in the Phase Field Approach to Free Boundary Problems
数学科学:自由边界问题相场方法的新方向
- 批准号:
9002242 - 财政年份:1990
- 资助金额:
$ 187.73万 - 项目类别:
Continuing Grant
Development of a New Method to Detect Magnetoelectric Effect of a Crystal under Bias Electric Field and its Application to Structural Phase Transition in Ordered Magnets
偏电场下晶体磁电效应检测新方法的发展及其在有序磁体结构相变中的应用
- 批准号:
63540265 - 财政年份:1988
- 资助金额:
$ 187.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)