Image-driven subject-specific spine models

图像驱动的特定主题脊柱模型

基本信息

  • 批准号:
    EP/V036602/1
  • 负责人:
  • 金额:
    $ 103.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Many millions of people in the UK suffer problems with their spine or back. These problems incur a very high cost, both socially and economically, and we need to find ways of preventing or solving them. But to achieve this, we need high-quality tools that can help us understand how healthy spines function and what happens when they develop problems. Our project is concerned with developing and testing 'image-driven subject-specific spine models' which have the potential to provide a tool for determining forces in the spine.Determining the force that an individual spine is experiencing is essential for understanding spine function. Abnormal forces are linked to many problems, including manual handling injury, disc degeneration, and back pain. Measuring force directly in the spine, however, is very invasive. Models provide a non-invasive method but, to provide accurate assessments, they need to include information about the individual (subject-specific). The subject-specificity is essential because everyone has unique anatomy and tissues, and uses their spines differently.We have successfully piloted a modelling approach for measuring spinal force that includes subject-specific anatomy and spinal motion. The method involves using medical imaging not only to provide information on an individual's anatomy but also to observe the movement of their spine during activity. The observed motion is then applied to the model and force calculated. The use of spinal motion to drive models is a relatively recent innovation that we, and other groups, have shown to be feasible. It has several benefits, including the ability to identify localised forces within the spine and avoiding the need to model unknown muscle forces.In the proposed project, our first goal is to extend our pilot work by including subject-specific tissue properties in our models. Very few models of the spine include subject-specific tissue properties. However, we know tissues vary a lot between individuals and having subject-specific properties will increase the accuracy of our models. We will, therefore, develop a method for estimating tissue properties from medical imaging data. Models will be created from specimens that have been tested to determine their mechanical response. We will then learn how we can use the image data to set tissue properties that allow our models to reproduce the measured mechanical response.Our subsequent goals are to test our image-driven subject-specific modelling method rigorously and develop them for real application. Subject-specific models have many potential applications for determining forces, but these applications differ in their tolerance for error. We will, therefore, evaluate and characterise the magnitude and sources of error in our models. Initially, we will use specimens which can be mechanically tested so that we can compare model results to forces measured in the specimens. We will use this information to improve our methods for collecting data from people then we will perform more testing of our method using volunteers who we will ask to perform specified activities. Again we will compare our model results to the expected forces.The development and testing of our image-driven subject-specific spine models will provide a new tool for determining forces in the spine. It will also provide new tools for measuring and modelling spine movement and quantifying the properties of the spinal tissues. But more than this, our project will pave the way to a real understanding of how the spine functions and how problems in the spine can be prevented or treated more effectively.
英国有数百万人患有脊柱或背部问题。这些问题造成了很高的社会和经济成本,我们需要找到预防或解决这些问题的方法。但为了实现这一目标,我们需要高质量的工具来帮助我们了解健康的脊柱如何发挥作用以及当它们出现问题时会发生什么。我们的项目涉及开发和测试“图像驱动的特定主题脊柱模型”,该模型有可能提供确定脊柱受力的工具。确定单个脊柱所承受的力对于了解脊柱功能至关重要。异常的力量与许多问题有关,包括手动操作损伤、椎间盘退变和背痛。然而,直接测量脊柱上的力是非常侵入性的。模型提供了一种非侵入性方法,但为了提供准确的评估,它们需要包含有关个人(特定于主题)的信息。受试者特异性至关重要,因为每个人都有独特的解剖结构和组织,并且以不同的方式使用脊柱。我们已经成功地试验了一种用于测量脊柱力的建模方法,其中包括受试者特定的解剖结构和脊柱运动。该方法涉及使用医学成像,不仅可以提供有关个人解剖结构的信息,还可以观察活动期间脊柱的运动。然后将观察到的运动应用于模型并计算力。使用脊柱运动来驱动模型是一项相对较新的创新,我们和其他团队已经证明这是可行的。它有几个好处,包括能够识别脊柱内的局部力,并避免需要对未知的肌肉力进行建模。在拟议的项目中,我们的第一个目标是通过在我们的模型中包含特定于受试者的组织特性来扩展我们的试点工作。很少有脊柱模型包含受试者特定的组织特性。然而,我们知道组织在个体之间存在很大差异,并且具有特定于受试者的特性将提高我们模型的准确性。因此,我们将开发一种根据医学成像数据估计组织特性的方法。模型将根据经过测试以确定其机械响应的样本创建。然后,我们将学习如何使用图像数据来设置组织属性,使我们的模型能够重现测量的机械响应。我们后续的目标是严格测试我们的图像驱动的特定主题建模方法,并将其开发用于实际应用。特定主题的模型在确定力方面有许多潜在的应用,但这些应用的误差容忍度有所不同。因此,我们将评估和描述模型中误差的大小和来源。最初,我们将使用可以进行机械测试的样本,以便我们可以将模型结果与样本中测量的力进行比较。我们将利用这些信息来改进我们从人们那里收集数据的方法,然后我们将使用我们要求志愿者执行指定活动的志愿者对我们的方法进行更多测试。我们将再次将我们的模型结果与预期的力进行比较。我们的图像驱动的特定主题脊柱模型的开发和测试将为确定脊柱中的力提供新工具。它还将为脊柱运动的测量和建模以及量化脊柱组织的特性提供新的工具。但更重要的是,我们的项目将为真正了解脊柱的功能以及如何更有效地预防或治疗脊柱问题铺平道路。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BORS/BJR TRAVELLING FELLOWSHIP: IMAGE-DRIVEN SUBJECT-SPECIFIC SPINE MODELS: DEVELOPING A NOVEL TOOL TO MEASURE IN VIVO LOADING
BORS/BJR 旅行奖学金:图像驱动的特定主题脊柱模型:开发一种测量体内负荷的新型工具
  • DOI:
    10.1302/1358-992x.2023.16.050
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Williams D
  • 通讯作者:
    Williams D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Judith Meakin其他文献

Safety and compatibility of magnetic-controlled growing rods and magnetic resonance imaging
  • DOI:
    10.1007/s00586-015-4178-5
  • 发表时间:
    2015-08-14
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Henry R. Budd;Oliver M. Stokes;Judith Meakin;Jonathan Fulford;Michael Hutton
  • 通讯作者:
    Michael Hutton

Judith Meakin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
  • 批准号:
    10360108
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
  • 批准号:
    10666402
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
  • 批准号:
    10904247
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
Determining the contribution of microbial-derived metabolites to protective immunity in obesity-driven cancer risk.
确定微生物衍生的代谢物对肥胖驱动的癌症风险中的保护性免疫的贡献。
  • 批准号:
    10505372
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
Bayesian Data-Driven Subject-Specific Modeling of Voice Production
贝叶斯数据驱动的语音产生的特定主题建模
  • 批准号:
    10609493
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
A self-capacitance driven wearable electromyometrial imaging system for maternal and fetal monitoring during pregnancy and labor
一种自电容驱动的可穿戴式肌电成像系统,用于妊娠和分娩期间的母婴监测
  • 批准号:
    10445605
  • 财政年份:
    2022
  • 资助金额:
    $ 103.76万
  • 项目类别:
Alpha-synuclein driven cellular changes and vocal dysfunction in Parkinson's Disease
帕金森病中α-突触核蛋白驱动的细胞变化和发声功能障碍
  • 批准号:
    10283440
  • 财政年份:
    2021
  • 资助金额:
    $ 103.76万
  • 项目类别:
Image-driven subject-specific spine models
图像驱动的特定主题脊柱模型
  • 批准号:
    EP/V032275/1
  • 财政年份:
    2021
  • 资助金额:
    $ 103.76万
  • 项目类别:
    Research Grant
Flexible Piezoelectric Array for Cardiovascular MonitoringDuring Cardiac Arrest
用于心脏骤停期间心血管监测的柔性压电阵列
  • 批准号:
    10440514
  • 财政年份:
    2021
  • 资助金额:
    $ 103.76万
  • 项目类别:
Identifying the Distinct Intracellular Pathways That Mediate Dopamine-Driven Behaviors
确定介导多巴胺驱动行为的独特细胞内途径
  • 批准号:
    10477942
  • 财政年份:
    2021
  • 资助金额:
    $ 103.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了