3D Nanophotonics in Artificially Structured Chalcogenide Materials

人工结构硫族化物材料中的 3D 纳米光子学

基本信息

  • 批准号:
    EP/V040030/1
  • 负责人:
  • 金额:
    $ 48.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The iridescent colours often seen in nature in butterfly wings, beetle carapaces and cuttlefish mating displays are a result of the wave nature of light which can show constructive and destructive interference effects for different colours. We can make in the lab repeated structures where the repeat period is close to the wavelength of light and see similar effects; a well-known example being the reflection from a compact disc but also the opposite effect is seen in the anti-reflection coating applied to spectacles which can be seen in the violet coloured high angle reflections. In fact, the angular sensitivity of these diffractive reflection effects can lead to wonderful rainbow reflective colour displays, while some three-dimensional structures such as butterfly wings suppress this angular change; as in the case of the famous blue morphospecies which maintains a largely blue wing colour while flying.In this project, we aim to build three-dimensional repeating structures that can lead to very strong reflection effects while reducing the angular changes normally seen with two-dimensional gratings and mirrors. These 3D periodic materials can effectively reflect light incident from any angle for a particular range of colours (wavelengths) and essentially block light from passing through the material in any direction. These materials are known as photonic bandgap materials because they block a band of colours and because they have properties analogous to the semiconductor bandgaps that block electrons travelling in certain energy bands. Although difficult to fabricate, these materials could exhibit quite striking and useful effects. For instance, blocking all transmission in all directions could be used as protection against bright light (e.g. lasers) or the bandgap could be made sensitive to certain molecular species or pollutants providing a sensing modality. In our team, we have been looking at the light trapping properties of these materials and their effect on light emission. For instance, if a fluorescent dye molecule with emission band entirely within the bandgap is excited inside such an ideal material then it will have no route by which to emit light and remain in its excited state until decaying by a non-radiative route. However, if we create a cavity by removing a small amount of material, the light emission will occur but will be trapped in this cavity until absorbed or leaking through the finite barrier to the edge of the material. Theoretically, these storage times can be very long while the cavity volumes can be made very small which can lead to a strong enhancement of emission and absorption of light by the fluorophore, so-called 'strong coupling' predicted by the full quantum mechanical treatments of the light-matter interaction.Finally, in this project, we will develop reliable techniques to make these 3D light confining materials and exploit their novel properties to trap light in tiny 'cavities' and waveguides thus showing the strongest light-matter interactions possible. These results will have an impact across the board from creating new light sources containing single 'atom' like emitters through to the smallest lasers and materials mimicking the reflectivity of butterfly wings.
自然界中蝴蝶翅膀、甲虫甲壳和墨鱼交配展示中常见的彩虹色是光的波动性质的结果,光可以对不同的颜色显示建设性和破坏性的干涉效果。我们可以在实验室中制作重复周期接近光波长的重复结构,并看到类似的效果;一个众所周知的例子是光盘的反射,但在应用于眼镜的减反射涂层中也可以看到相反的效果,这可以在紫色的高角反射中看到。事实上,这些绕射反射效应的角度敏感性可以导致美妙的彩虹反射色彩显示,而一些三维结构,如蝴蝶翅膀,抑制了这种角度变化;就像著名的蓝色形态物种,它在飞行时保持大部分蓝色翅膀的颜色。在这个项目中,我们的目标是建立三维重复结构,可以产生非常强的反射效应,同时减少通常用二维栅格和镜子看到的角度变化。这些3D周期性材料可以有效地反射从任何角度入射的特定颜色(波长)的光,并基本上阻止光在任何方向通过材料。这些材料被称为光子带隙材料,因为它们阻挡了一种颜色的频带,而且它们具有类似于阻止电子在某些能带中传播的半导体带隙的性质。虽然很难制造,但这些材料可以显示出相当惊人和有用的效果。例如,阻挡所有方向的传输可以用来抵御强光(例如激光),或者可以使带隙对提供传感模式的某些分子物种或污染物敏感。在我们的团队中,我们一直在研究这些材料的捕光特性及其对光发射的影响。例如,如果一个发射带完全在带隙内的荧光染料分子在这样的理想材料内被激发,那么它将没有发光的途径,并保持其激发状态,直到通过非辐射途径衰减。然而,如果我们通过去除少量材料来创建一个腔,光发射将会发生,但会被困在这个腔中,直到被吸收或泄漏通过有限的势垒到达材料的边缘。理论上,这些存储时间可以非常长,而腔的体积可以非常小,这可以导致荧光团对光的发射和吸收的强烈增强,即通过光与物质相互作用的完全量子力学处理而预测的所谓的强耦合。最后,在这个项目中,我们将开发可靠的技术来制造这些3D光限制材料,并开发它们的新特性来将光捕获到微小的腔和波导中,从而显示出可能的最强的光与物质的相互作用。这些结果将对所有领域产生影响,从创建包含单个原子的新光源(如发射器)到最小的激光和模仿蝴蝶翅膀反射率的材料。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strongly Confining Light with Air-Mode Cavities in Inverse Rod-Connected Diamond Photonic Crystals
反杆连接金刚石光子晶体中空气模腔的强限制光
  • DOI:
    10.3390/cryst12030303
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Taverne M
  • 通讯作者:
    Taverne M
Modified Photonic Band Gap Via Thermal Shrinkage of Two-Photon Polymerized Distributed Bragg Reflectors
通过双光子聚合分布式布拉格反射器的热收缩来修改光子带隙
  • DOI:
    10.1109/cleo/europe-eqec57999.2023.10232036
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Y
  • 通讯作者:
    Chen Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying-Lung HO其他文献

Ying-Lung HO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying-Lung HO', 18)}}的其他基金

Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Research Grant

相似海外基金

Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    ARC Future Fellowships
Van der Waals nanophotonics
范德华纳米光子学
  • 批准号:
    2887484
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Studentship
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Development of Er-doped Semiconductor Nanophotonics to realize Optoelectronic Capabilities for Quantum Information Applications at Telecom Wavelengths
ExpandQISE:轨道 1:开发掺铒半导体纳米光子学以实现电信波长量子信息应用的光电功能
  • 批准号:
    2328540
  • 财政年份:
    2023
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonlinear topological nanophotonics based on semiconductor photonic crystals
基于半导体光子晶体的非线性拓扑纳米光子学
  • 批准号:
    22H00298
  • 财政年份:
    2022
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
  • 批准号:
    10509318
  • 财政年份:
    2022
  • 资助金额:
    $ 48.39万
  • 项目类别:
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Scalable Integrated Nanophotonics with Subwavelength Gratings
职业:具有亚波长光栅的可扩展集成纳米光子学
  • 批准号:
    2144568
  • 财政年份:
    2022
  • 资助金额:
    $ 48.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了